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Preface

This guide describes the simulator’s governing equations, constitutive functions and
numerical solution algorithms of the STOMP (Subsurface Transport Over Multiple Phases)
Version 2.0 simulator, a scientific tool for analyzing multiple phase subsurface flow and
transport.  Examples of the STOMP simulator applied to classical groundwater problems are
provided in a companion application guide [Nichols et al. 2000].  A description of the general
use, input file formatting, compilation and execution are provided in an updated user’s guide
[White and Oostrom 2000]. The latest STOMP version includes new operational modes (Water-
Oil-Dissolved Oil and Water-Oil-Dissolved Oil-Surfactant), several changes to existing modes,
and expanded options for solute transport. For additional information, the reader is referred to
the STOMP web page at http://www.pnl.gov/etd/stomp/.

In writing this guide for the STOMP simulator, the authors have assumed that the reader
comprehends concepts and theories associated with (multiple-phase) hydrology, heat transfer,
thermodynamics, radioactive chain decay, and relative permeability-saturation-capillary pressure
constitutive functions.  The authors further assume that the reader is familiar with the computing
environment on which they plan to compile and execute the STOMP simulator.

The STOMP simulator requires an ANSI FORTRAN 77 compiler to generate an
executable code.  The memory requirements for executing the simulator are dependent on the
complexity of physical system to be modeled and the size and dimensionality of the
computational domain.  Likewise execution speed depends on the problem complexity, size and
dimensionality of the computational domain, and computer performance.  One-dimensional
problems of moderate complexity can be solved on conventional desktop computers, but
multidimensional problems involving complex flow and transport phenomena typically require
the power and memory capabilities of workstation or mainframe type computer systems.

iii



iv



Summary

The U. S. Department of Energy, through the Office of Technology Development, has
requested the demonstration of remediation technologies for the cleanup of volatile organic
compounds and associated radionuclides within the soil and groundwater at arid sites.  This
demonstration program, called the VOC-Arid Soils Integrated Demonstration Program (Arid-ID),
has been initially directed at a volume of unsaturated and saturated soil contaminated with carbon
tetrachloride, on the Hanford Site near Richland, Washington.  A principal subtask of the Arid-ID
program involves the development of an integrated engineering simulator for evaluating the
effectiveness and efficiency of various remediation technologies.  The engineering simulator's
intended users include scientists and engineers who are investigating subsurface phenomena
associated with remediation technologies.  Principal design goals for the engineer simulator
include broad applicability, verified algorithms, quality assurance controls, and validated
simulations against laboratory and field-scale experiments.  An important goal for the simulator
development subtask involves the ability to scale laboratory and field-scale experiments to full-
scale remediation technologies, and to transfer acquired technology to other arid sites.  The
STOMP (Subsurface Transport Over Multiple Phases) simulator has been developed by the
Pacific Northwest National Laboratory(a) for modeling remediation technologies.  Information on
the use, application, and theoretical basis of the STOMP simulator are documented in three
companion guide manuals.  This manual, the Theory Guide (Version 2.0), provides the most
recent theory and discussions on the governing equations, constitutive relations, and numerical
solution algorithms for the STOMP simulator.

The STOMP simulator's fundamental purpose is to produce numerical predictions of
thermal and hydrogeologic flow and transport phenomena in variably saturated subsurface
environments, which are contaminated with volatile or nonvolatile organic compounds.  Auxiliary
applications include numerical predictions of solute transport processes including radioactive
chain decay processes.  Quantitative predictions from the STOMP simulator are generated from
the numerical solution of partial differential equations that describe subsurface environment
transport phenomena.  Description of the contaminated subsurface environment is founded on
governing conservation equations and constitutive functions.  Governing coupled flow equations
are partial differential equations for the conservation of water mass, air mass, (dissolved) organic
compound mass and thermal energy. Equations for the conservation of salt or surfactant mass
have also been included. Constitutive functions relate primary variables to secondary variables. 
Solution of the governing partial differential equations occurs by the integral volume finite
difference method.  The governing equations that describe thermal and hydrogeological flow

(a) Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by
Battelle Memorial Institute
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processes are solved simultaneously using Newton-Raphson iteration to resolve the
nonlinearities in the governing equations.  Governing transport equations are partial differential
equations for the conservation of solute mass.  Solute mass conservation governing equations are
solved sequentially, following the solution of the coupled flow equations, by a direct application
of the integral volume finite difference method.  The STOMP simulator is written in the
FORTRAN 77 language, following American National Standards Institute (ANSI) standards. 
The simulator utilizes a variable source code configuration, which allows the execution memory
and speed be tailored to the problem specifics, and essentially requires that the source code be
assembled and compiled through a software maintenance utility.

KEYWORDS:  subsurface, porous media, multiple phase, groundwater, nonaqueous
phase liquid (NAPL), volatile organic compound (VOC), variably saturated, frozen-soil
conditions, brines, nonequilibrium kinetics, solute transport, radioactive chain decay, hysteresis,
fluid entrapment, finite-difference, Langmuir, Freundlich, Monod, mobilization, solubilization,
dissolution, Newton-Raphson, nonlinear, modeling, TVD transport, banded linear system solver,
conjugate gradient solver
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Glossary of Symbols

Roman Symbols

a generic function coefficient

an
o activity for liquid of oil component o

a1 , ... , a12 liquid water primary constant (Table A.4)

a solute mass conservation equation coefficient for node 

a phase component of the solute mass conservation equation coefficient for phase 

for node 

as
C effective solute diffusion coefficient parameter

A area, m2 

Ar product constituent

Apr primary reactant constituent

Ar secondary reactant constituent

A area of surface , m2 

A0 , ..., A22 liquid water primary constant (Table A.4)

b generic function coefficient

b0 , ..., b82 water-vapor primary constant (Table A.6)

bs
C effective solute diffusion coefficient parameter

B0 , ..., B96 water-vapor primary constant (Table A.6)

Roman Symbols (Continued)

ix



c generic function coefficient

cpn
c isobaric specific heat for liquid of oil component o , J/kg K

c pn
c ref. isobaric specific heat for liquid of oil component o , J/kg K

cv
c constant volume specific heat for component j , J/kg K

c10 , ..., c33 liquid water thermal conductivity constants (Table A.9)

C solute concentration , 1/m3

C l
do dissolved oil equilibrium concentration,  1/m3

Cl
i component concentration in aqueous phase, 1/m3

C p product concentration, 1/m3

C pr primary reactant concentration, 1/m3

Cr secondary reactant concentration, 1/m3

C solute concentration in phase , 1/m3 

CMC critical micelle concentration, 1/m3 

d generic function coefficient

d p particle diameter, m

Dg
jk vapor binary diffusion coefficient for component pair jk , m2/s

D g
jk reference vapor binary diffusion coefficient for component pair jk , m2/s

Roman Symbols (Continued)
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Dh x
, Dh y

, Dh z
hydraulic dispersion coefficient for phase  (x-direction component, y–direction

component, z–direction component).

  Dl
C

e effective solute diffusion coefficient for the aqueous phase, m2/s

Dml
i molecular diffusion coefficient of component i in aqueous phase, m2/s

Dn
jk NAPL binary diffusion coefficient for dissolved component pair jk , m2/s

oDn
jk NAPL binary diffusion coefficient at infinite dilution for dissolved component

pair jk , m2/s

D j diffusion coefficient of component j  for phase , m2/s

D j diffusion-dispersion tensor of component j  for phase , m2/s

DC solute diffusion coefficient for phase , m2/s

D C reference solute diffusion coefficient for phase , m2/s

DS salt diffusion coefficient for phase , m2/s

Dh hydraulic dispersion tensor for phase , m2/s

e generic function coefficient

E energy accumulation term, J/m3 

fpr reaction rate factor

F jk chain decay fraction for radionuclide pair jk

Roman Symbols (Continued)

Fp
j polarity correction factor of component j

xi



  Fl
S osmotic flux of the aqueous phase, kg/m2 s

F j advective flux of component j  in phase , kg/m2 s

g acceleration of gravity, m/s2

gpr component of reaction rate factor

G jk Grunberg interaction parameter for component pair jk

GC solute flux for phase  across surface , 1/m2 s

h capillary head, m

h j enthalpy of component j , J/kg

h enthalpy of phase , J/kg

hg
j vapor enthalpy of component j , J/kg

  hgl gas-aqueous water equivalent capillary head, m

hgn gas-NAPL water equivalent capillary head, m

hn
o liquid enthalpy of oil component o , J/kg

  hnl NAPL-aqueous water equivalent capillary head, m

hod oven-dried head, 109 m

hvap
o heat of vaporization of oil component o , J/kg

Roman Symbols (Continued)

hvap
o

b
heat of vaporization at normal boiling of oil component o , J/kg

hwi water-ice heat of fusion, J/kg
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h1 , ... , h11 Hankinson-Brobst-Thomson liquid density function constants (Table A.5)

  
Hgl

j Henry’s coefficient vapor-aqueous phase of component j , 1/Pa

J g
j diffusive-dispersive flux of component j  for the gas phase, kg/m2 s

  J l
j diffusive-dispersive flux of component j  for the aqueous phase, kg/m2 s

J n
j diffusive-dispersive flux of component j  for the NAPL phase, kg/m2 s

J S pressure dispersion flux of salt for phase , kg/m2 s

k jk thermal conductivity interaction parameter for component pair jk , W/m K

k f , km intrinsic permeability (fracture, matrix), m2 

k thermal conductivity of phase , W/m K

kn
o liquid thermal conductivity of oil component o , W/m K

kn, l
do NAPL-aqueous interface transfer coefficient, 1/s

kmax maximum utilization rate in Monod reactions,1/m3 s

k s half-velocity coefficient in Monod reactions, 1/m3 

kr fluid relative permeability of phase 

krg f
, krgm

gas relative permeability (fracture, matrix)

Roman Symbols (Continued)

  
krl f

, krlm
aqueous relative permeability (fracture, matrix)

  krlb
aqueous relative permeability (bulk)

k1 , ..., k9 saturated water vapor pressure function constants (Table A.2)

xiii



  Kgl solute gas-aqueous distribution coefficient, m3 aqu/m3 gas

  Kln solute aqueous-NAPL distribution coefficient, m3 NAPL/m3 aqu

  Ksl solute solid-aqueous distribution coefficient, m3 aqu/kg solid

Ksl
i solid-aqueous distribution coefficient of component i, m3 aqu/kg solid

K S pressure dispersion coefficient for salt through phase , m2 

k intrinsic permeability tensor, m2 

ke equivalent thermal conductivity tensor, W/m K

ke sat
equivalent thermal conductivity tensor (saturated conditions), W/m K

keun
equivalent thermal conductivity tensor (unsaturated conditions), W/m K

ks porous media thermal conductivity tensor, W/m K

l j( ) numerical index (Table A.8)

Lg Land’s parameter for gas-NAPL and gas-aqueous interfaces

Ln Land’s parameter for NAPL-aqueous interfaces

L0 , ..., L2 water vapor derived constants (Table A.7)

Roman Symbols (Continued)

m van Genuchten function parameter

˙ m j mass source rate of component j , kg/s

˙ m C solute source rate, 1/s

˙ m S salt mass source rate, kg/s

M C molecular weight of solute C , kg/kgmol
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M j molecular weight of component j , kg/kgmol

M j mass accumulation term for component j , kg/m3 

M ij mean molecular weight of component pair jk , kg/kgmol

M molecular weight of phase , kg/kgmol

n van Genuchten function parameter

Nb,Nc , Nt Bond, capillary, and total trapping number

Nt
c critical trapping number

N p moles of product p

N pr moles of primary reactant pr

Nr moles of secondary reactant r

n surface normal vector

n j( ) numerical index (Table A.8)

nD,  nT porosity (diffusive, total)
Roman Symbols (Continued)

n D ,  n T reference porosity (diffusive, total)

nDf
, nDm

diffusive porosity (fracture, matrix)

P pressure, Pa

P reference pressure, Pa

Patm atmospheric pressure, Pa

Pc
C critical pressure of solute C , Pa

xv



Pc
j critical pressure of component j , Pa

Pc
n critical pressure for NAPL phase mixture, Pa

Pcap capillary pressure, Pa

Pe Peclet number for phase  on surface 

P pressure of phase , Pa

Pg
j vapor pressure of component j , Pa

Pr reduced pressure, Pa

Pr
j reduced pressure of component j , Pa

Psat
j saturated vapor pressure of component j , Pa

Ptp total potential pressure, Pa

˙ q thermal energy source, W

Roman Symbols (Continued)

Q heat flux for phase  across surface  , W/m2 

R universal gas constant, J/kg K

Re Reynolds number

R j gas constant of component j , J/kg K

R e residual for energy conservation equation, W

R j residual for mass conservation equation of component j , kg/s

˙ R C solute decay rate constant, 1/s

xvi



RD retardation factor

R gas constant of phase , J/kg K

Sc Schmidt number

Sh Sherwood number

s∗ ( ) generic saturation-capillary pressure function

sg ,  s g ,  s g gas saturation (actual, effective, apparent)

s g f
free gas saturation (effective)

s g r
residual gas saturation (effective)

is gr
maximum residual gas saturation (effective)

s gt
trapped gas saturation (effective)

Roman Symbols (Continued)

  sgtl , s gtl gas saturation trapped by aqueous phase (actual, effective)

s g tn
gas saturation trapped by NAPL phase (effective)

si , s i ice saturation (actual)

  sl , s l ,  s l aqueous saturation (actual, effective, apparent)

  
sl f

, s l f
fracture aqueous saturation (actual, effective)

  slm
, s lm

matrix aqueous saturation (actual, effective)

sl
min minimum aqueous saturation (effective)

sm ,  s m irreducible saturation (actual, effective)
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sm f
fracture irreducible saturation (actual)

smm
matrix irreducible saturation (actual)

sn ,  s n ,  s n NAPL saturation (actual, effective, apparent)

s n f
free NAPL saturation (effective)

s nr
residual NAPL saturation (effective)

is nr
maximum residual NAPL saturation (effective)

s nt
trapped NAPL saturation (effective)

snr
max maximum residual NAPL saturation

st ,  s t ,  s t total-liquid saturation (actual, effective, apparent)

Roman Symbols (Continued)

st
min minimum total-liquid saturation (effective)

suf unfrozen water fraction

S salt concentration, kg/m3

Ss coefficient of specific storage, 1/m, or solute sorbed on solid phase, 1/kg

S salt concentration in phase , kg/m3 

t time, s

T temperature, K

T reference temperature, K

T jk dimensionless temperature for component pair jk , K
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T1/2
C radioactive decay half-life, s

Tb
j normal boiling temperature of component j , K

Tc
C critical temperature for solute C , K

Tc
j critical temperature for component j , K

Tc
jk critical temperature for component pair jk , K

Tc
n critical temperature of NAPL mixture, K

T fp
j freezing point temperature for component j , K

T n
o reference temperature of oil component o , K

Roman Symbols (Continued)

Tr reduced temperature, K

Tr
j reduced temperature of component j , K

T r
j reduced reference temperature of component j , K

u internal energy of phase , J/kg

ug
j vapor internal energy of component j , J/kg

un
o liquid internal energy of oil component o , J/kg

us porous media internal energy, J/kg

v specific volume of phase , m3/kg

vc
j critical specific volume of component j , m3/kg

V volume, m3 

xix



V
x
, V

y
, V

z
Darcy velocity of phase (x- or r-direction component, y- or Q-direction

component, z-direction component), m/s

′ V 
x
, ′ V 

y
, ′ V 

z
Normalized Darcy velocity of phase (x- or r-direction component, y- or Q-

direction component, z-direction component), m/s

ˆ V 
x
, ˆ V 

y
, ˆ V 

z
Pore velocity of phase (x- or r-direction component, y- or Q-direction

component, z-direction component), m/s

′ ˆ V 
x
, ′ ˆ V 

y
, ′ ˆ V 

z
Normalized pore velocity of phase (x- or r-direction component, y- or Q-

direction component, z-direction component), m/s

V Darcy velocity vector of phase , m/s

Roman Symbols (Continued)

x j ,i( ) numerical index (Table A.8)

X reduced temperature factor

Y reduced temperature factor

′ Y reduced temperature factor

z j ,i( ) numerical index (Table A.8)

Z reduced temperature and pressure factor

Zc
o critical compressibility factor of oil component o

ZRA
j Rackett compressibility factor of component j

ZRA
n Rackett compressibility factor for NAPL mixture

zg unit gravitational direction vector

xx



Greek Symbols

van Genuchten function parameter, 1/m

d van Genuchten function parameter for drainage, 1/m

i van Genuchten function parameter for imbibition, 1/m

L longitudinal dispersivity, m

P porous media coefficient of pressure compressibility, 1/Pa

q thermodynamic correction factor

T porous media coefficient of thermal compressibility, 1/K or transverse dispersivity, m

DeVries thermal conductivity weighting factor

  gl gas-aqueous capillary pressure scaling factor

gn gas-NAPL capillary pressure scaling factor

  il ice-aqueous capillary pressure scaling factor

  nl NAPL-aqueous capillary pressure scaling factor

L reduced temperature factor

′ L reduced temperature factor

P liquid water coefficient of pressure compressibility, 1/Pa

t time step, s

x node spacing across surface , m

j
k Kronecker delta for component pair jk

Greek Symbols (Continued)

integration variable

xxi



o dipole moment of oil component o , debyes

r
o reduced dipole moment of oil component o , debyes

Brooks and Corey function parameter

C reaction (radioactive decay) constant, 1/s

kinematic viscosity of phase , Pa s

reference kinematic viscosity of phase , Pa s

g
j vapor component kinematic viscosity of component j , Pa s

  l
S brine viscosity, Pa s

n
o liquid kinematic viscosity of oil component o , Pa s

n
o reference liquid kinematic viscosity of oil component o , Pa s

j inverse viscosity of component j , (Pa s)-1 

osmotic potential, Pa

phase density for phase , kg/m3 

g
j component vapor density of component j , kg/m3 

  l reference aqueous density, kg/m3 

n
o liquid density of oil component o , kg/m3 

Greek Symbols (Continued)

s porous media grain density, kg/m3 

sat
j saturated liquid density of component j , kg/m3 

xxii



sat
j reference saturated liquid density of component j , kg/m3 

jk scale parameter for component pair jk

  gl gas-aqueous interfacial surface tension, N/m

gn gas-NAPL interfacial surface tension, N/m

  il ice-aqueous interfacial surface tension, N/m

  nl NAPL-aqueous interfacial surface tension, N/m

  gl reference gas-aqueous interfacial surface tension, N/m

gn reference gas-NAPL interfacial surface tension, N/m

  nl reference NAPL-aqueous interfacial surface tension, N/m

surface or node index

− negative surface (west, south, bottom)

+ positive surface (east, north, top)

phase tortuosity for phase 

b
C molar volume of solute at its normal boiling temperature,  m3/mol

c
j critical molar volume of component j , m3/mol

Greek Symbols (Continued)

n
o liquid molar specific volume of oil component o , m3/mol

j volume fraction of component j

xxiii



jk association factor for component pair jk

association factor for solvent 

Φ jk binary interaction parameter for component pair jk

Φg
jk vapor binary interaction parameter for component pair jk

j mole fraction of component j  in phase 

Brooks and Corey function nonwetting fluid entry head, m

d Brooks and Corey function nonwetting fluid entry head for drainage, m

i Brooks and Corey function nonwetting fluid entry head for imbibition, m

j mass fraction of component j  in phase 

s
o mass fraction of organic compound sorbed on the rock/soil phase

P
j Pitzner acentric factor of component j

ΩD collision integral for diffusion

xxiv



Subscripts

B bottom

BB bottom boundary surface

E east

EB east boundary surface

g gas phase

i ice phase

  l aqueous phase

n NAPL phase

N north

NB north boundary surface

P center or local node

s rock/soil or solid phase

S south

SB south boundary surface

T top

TB top boundary surface

W west

WB west boundary surface

generic phase or phase index

xxv



Superscripts 

a air component

j generic component or component index

k generic component or component index

o oil component

w water component

xxvi



Mathematical Symbols

partial differential operator

∇ divergence operator

∑ summation operator

jor k

o

∑ summation over oil components

j= w,a,o
∑ summation over water, air, and oil components

  =l,g
∑ summation over aqueous and gas phases

  =l,g,i
∑ summation over aqueous, gas, and ice phases

  =l, g,n,i
∑ summation over aqueous, gas, NAPL, and ice phases

  =l,g,n
∑ summation over aqueous, gas, and NAPL phases

=W ,E ,S ,N ,B,T

∑ summation over all node surfaces

  
V 
∫ dV volume integral

  
Γ
∫ dΓ surface integral

y
x x evaluated at y

Mathematical Symbols (Continued)

xxvii



  a arithmetic interfacial averaging at surface 

  h harmonic interfacial averaging at surface 

  uw upwind or donor cell interfacial averaging at surface 

  { }t evaluated at time t  (previous time step)

  { }t + t evaluated at time t + t  (current time step)

  { }t + t

2 evaluated at time t +
t

2
 (intermediate time)

max   ,  [ ] maximum value

  absolute value

xxviii



Contents

Preface iii

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Acknowlegements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Glossary of Symbols  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Roman Symbols  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Greek Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxii

Subscripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvi

Superscripts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvii

Mathematical Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxviii

1.0  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1

2.0  Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1

2.1  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1

2.2  Operational Modes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3

3.0  Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1

3.1  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1

3.2  Water Mass Conservation Equation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1

3.3  Air Mass Conservation Equation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2

3.4  Oil Mass Conservation Equation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3

3.5  Energy Conservation Equation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4

3.6  Salt Mass Conservation Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5

3.7  Surfactant Mass Conservation Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         3.6

3.8  Solute Mass Conservation Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.6

4.0  Constitutive Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1

4.1  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1

4.2  Gas-Phase Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1

xxx



4.2.1  Water Vapor Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2

4.2.2  Oil Vapor Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3

4.2.3  Air Pressure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4

4.2.4  Brine Vapor Pressure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4

4.3  Density  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4

4.3.1  Gas-Phase Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4

4.3.2  Aqueous-Phase Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5

4.3.3  NAPL-Phase Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6

4.3.4  Ice Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.8

4.3.5  Brine Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.8

4.4  Mass and Mole Fractions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.8

4.4.1  Gas-Phase Component Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.9

4.4.2  Aqueous-Phase Component Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.9

4.4.3  NAPL-Phase Component Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.10

4.4.4  Salt Solubility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.10

4.5  Viscosity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.11

4.5.1  Gas-Phase Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.11

4.5.2  Aqueous-Phase Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.13

4.5.3  NAPL-Phase Viscosity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.13

4.5.4  Brine Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.14

4.6  Enthalpy and Internal Energy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.14

4.6.1  Gas-Phase Enthalpy and Internal Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.15

4.6.2  Aqueous-Phase Enthalpy and Internal Energy . . . . . . . . . . . . . . . . . . . . . . . . . . 4.18

4.6.3  NAPL-Phase Enthalpy and Internal Energy  . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.20

4.6.4  Ice Enthalpy and Internal Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.20

4.6.5  Brine Enthalpy and Internal Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.20

4.7  Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.22

4.7.1  Effective Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.22

xxxi



4.7.2  Liquid Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.23

4.7.3  Ice Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.24

4.7.4  Brine Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.24

4.8  Diffusion Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.25

4.8.1  Gas-Phase Diffusion Coefficient  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.25

4.8.2  Aqueous-Phase Diffusion Coefficient  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.27

4.8.3  NAPL-Phase Diffusion Coefficient  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.27

4.9  Porosity and Tortuosity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.28

4.10  Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.29

4.10.1 Aqueous-Gas Systems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.30

4.10.1.1  Van Genuchten Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.30

4.10.1.2  Brooks and Corey Function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.31

4.10.1.3  Dual Porosity Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.31

4.10.1.4  Capillary Pressure-Saturation Functions for Systems with Gas Entrapment 4.32

4.10.2 Aqueous-Ice-Gas Systems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.33

4.10.2.1  Van Genuchten Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.35

4.10.2.2  Brooks and Corey Function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.36

4.10.3 Aqueous-NAPL-Gas Systems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.37

4.10.3.1  Van Genuchten Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.39

4.10.3.2  Brooks and Corey Function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.39

4.10.3.3  Capillary Pressure-Saturation Functions for Systems with Fluid Entrapment 4.40

4.11  Relative Permeability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.43

4.11.1  Aqueous-Gas Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.43

4.11.1.1  Burdine Relative Permeability Function  . . . . . . . . . . . . . . . . . . . . . . . . . 4.43

4.11.1.2  Mualem Relative Permeability Function . . . . . . . . . . . . . . . . . . . . . . . . . 4.44

4.11.1.3  Corey Relative Permeability Function  . . . . . . . . . . . . . . . . . . . . . . . . . . 4.45

4.11.1.4  Fatt and Klikoff Relative Permeability Function  . . . . . . . . . . . . . . . . . . 4.45

4.11.1.5  Dual Porosity Relative Permeability Function  . . . . . . . . . . . . . . . . . . . . 4.45

xxxii



4.11.1.6  Relative Permeability Functions for Systems with Gas Entrapment  . . . 4.46

4.11.2  Aqueous-Ice-Gas Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.47

4.11.2.1  Burdine Relative Permeability Function  . . . . . . . . . . . . . . . . . . . . . . . . . 4.48

4.11.2.2  Mualem Relative Permeability Function . . . . . . . . . . . . . . . . . . . . . . . . . 4.48

4.11.3  Aqueous-NAPL-Gas Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.49

4.11.3.1  Burdine Relative Permeability Function  . . . . . . . . . . . . . . . . . . . . . . . . . 4.49

4.11.3.2  Mualem Relative Permeability Function . . . . . . . . . . . . . . . . . . . . . . . . . 4.50

4.11.3.3 Relative Permeability Functions for Systems with Fluid Entrapment . . . 4.51

4.12 Mechanical Dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.53

4.13  Partition Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.54

4.13.1  Salt Partition Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.54

4.13.2  Surfactant Partition Coefficients  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.54

4.13.3  Dissolved-Oil Partition Coefficients  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       4.55

4.13.4  Solute Partition Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       4.55

4.14  Solute Diffusion Coefficients  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.58

4.15  Solute Chain Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.59

4.16  First-Order Reactions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       4.59

4.17  Kinetic Dissolution/Solubilization of Oil  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       4.60

4.18  Mobilization of Nonaqueous Phase Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       4.61

5.0  Primary Variables and Phase Transitions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1

5.1  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1

5.2  Water-Air Systems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2

5.3  Water-Ice-Air Systems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3

5.4  Water-Oil Systems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4

6.0  Numerical Solution Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1

6.1  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1

6.2  Governing Equation Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2

6.2.1  Mass Conservation Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2

xxxiii



6.2.2  Energy Conservation Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.5

6.2.3  Salt/Surfactant Conservation Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.7

6.2.4  Solute Conservation Equation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.10

6.2.4.1 Patankar’s [1980] Power Law Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . .       6.12

6.2.4.2 TVD Transport  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       6.14

6.3  Boundary Conditions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.16

6.3.1  Dirichlet Boundary Condition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.18

6.3.2  Neumann Boundary Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.18

6.3.3  Zero Flux Boundary Condition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.19

6.3.4  Initial Condition Boundary Condition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.19

6.3.5  Saturated Boundary Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.20

6.3.6  Unit Gradient Boundary Condition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.20

6.3.7  Free Gradient Boundary Condition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.20

6.3.8  Outflow Boundary Condition  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.21

6.3.9  Inflow Boundary Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.21

6.3.10 Falling-Head/Pond Boundary Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .       6.21

6.4  Newton-Raphson Linearization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.23

6.5  Linear System Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.26

7.0  Code Architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1

7.1  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1

7.2  Flow Path  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7.1

8.0 Engineered Systems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.1

8.1 Dual-Screen Wells for In-Well Vapor Stripping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.1

9.0  References 9.1

Appendix A A.1

xxxiv



Figures
4.1  Saturated Vapor Pressure for Water  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.64

4.2  Vapor Pressure Lowering for Water @ 100 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.64

4.3  Saturated Vapor Pressure for Carbon Tetrachloride  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.65

4.4  Saturated Liquid Density for Water  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.65

4.5  Saturated Liquid Density for Carbon Tetrachloride  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.66

4.6  Solubility of Sodium Chloride in Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.66

4.7  Component Vapor Viscosity for Air, Water, and Carbon Tetrachloride  . . . . . . . . . . . . . . . . 4.67

4.8  Saturated Liquid Viscosity for Water  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.67

4.9  Saturated Liquid Viscosity for Carbon Tetrachloride  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.68

4.10  Saturated Vapor Enthalpy and Internal Energy for Water  . . . . . . . . . . . . . . . . . . . . . . . . . . 4.68

4.11  Saturated Vapor Enthalpy and Internal Energy for Carbon Tetrachloride  . . . . . . . . . . . . . . 4.69

4.12  Saturated Liquid Enthalpy for Water  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.69

4.13  Saturated Liquid Enthalpy for Carbon Tetrachloride  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.70

4.14  Enthalpy of Infinitely Dilute Aqueous Solutions of Salt (NaCl)  . . . . . . . . . . . . . . . . . . . . . 4.70

4.15  Excess Enthalpy of Aqueous Solution of Salt (NaCl) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.71

4.16  Saturated Liquid Thermal Conductivity for Water and Carbon Tetrachloride  . . . . . . . . . . . 4.71

4.17  Binary Gas Diffusion Coefficient for Water and Carbon Tetrachloride  . . . . . . . . . . . . . . . . 4.72

4.18  van Genuchten Saturation Function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.72

4.19  Brooks and Corey Saturation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.73

4.20  van Genuchten Dual Porosity Saturation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.73

4.21  Brooks and Corey Dual Porosity Saturation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.74

4.22  Ice Saturation for van Genuchten Saturation Function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.74

4.23  Solute Concentration for van Genuchten Saturation Function  . . . . . . . . . . . . . . . . . . . . . . . 4.75

4.24  Ice Saturation for Brooks and Corey Saturation Function  . . . . . . . . . . . . . . . . . . . . . . . . . . 4.75

4.25  Solute Concentration for Brooks and Corey Saturation Function . . . . . . . . . . . . . . . . . . . . . 4.76

4.26  Aqueous and Gas Relative Permeability with van Genuchten Retention Function  . . . . . . . 4.76

xxxv



4.27  Aqueous and Gas Relative Permeability with Brooks-Corey Retention Function . . . . . . . . 4.77

4.28  Aqueous and Gas Relative Permeability for Corey and Fatt-Klikoff Models  . . . . . . . . . . . 4.77

4.29  Dual Porosity Relative Permeability Function with Burdine and van Genuchten  . . . . . . . . 4.78

4.30  Dual Porosity Relative Permeability Function with Burdine and Brooks-Corey . . . . . . . . . 4.78

4.31  Aqueous Relative Permeability Functions Versus Ice Saturation . . . . . . . . . . . . . . . . . . . . . 4.79

6.1  X-Z Coordinate Plane for Cartesian Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.29

6.2  Y-Z Coordinate Plane for Cartesian Systems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.30

6.3  R-Z Coordinate Plane for Cylindrical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.31

6.4  R-Θ  Coordinate Plane for Cylindrical Systems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.32

6.5  X-Z Cartesian Coordinate Plane for “West” Boundary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.33

6.6  X-Y Cartesian Coordinate Plane for “West” Boundary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.34

6.7  R-Z Cylindrical Coordinate Plane for “West” Boundary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.35

6.8  R-Θ  Cylindrical Coordinate Plane for “West” Boundary  . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.36

7.1  STOMP Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.6

7.2  Transport Solution Flow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.7

xxxvi



Tables
2.1  Operational Mode Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5

5.1  Water-Air System Primary Variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3

5.2  Water-Ice-Air System Primary Variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4

5.3  Water-Oil System Primary Variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.6

A.1  Water Critical Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.1

A.2  Water Vapor Pressure Function Constants  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.1

A.3  Carbon Tetrachloride Vapor Pressure Function Constants and Critical Properties . . . . . . . . A.1

A.4  Liquid-Water Primary Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.2

A.5  Hankinson-Brobst-Thomson Liquid Density Function Constants  . . . . . . . . . . . . . . . . . . . . A.3

A.6  Water-Vapor Primary Constants  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.3

A.7  Water-Vapor Derived Constants  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.4

A.8  ASME Water Property Function Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.4

A.9  Liquid-Water Thermal Conductivity Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.5

xxxvii



1.0  Introduction

 An engineering simulator named STOMP, an acronym for Subsurface Transport Over
Multiple Phases, has been developed by the Pacific Northwest National Laboratory1 in the
framework of the VOC-Arid Soils Integration Demonstration Program, (Arid-ID) and funded by
the U.S. Department of Energy (DOE), Office of Technology Development (OTD). The Arid-ID
project was directed at the cleanup of volatile organic compounds (VOC) and associated
radionuclides and heavy metals in soils and groundwater at arid sites.  The initial demonstration
site is located within the 200 West Area on the Hanford Site near Richland, Washington.  The site
contains a volume of soil contaminated with carbon tetrachloride, which includes approximately
200 vertical feet of contaminated unsaturated sediments underlying inactive disposal sites and
overlying a 7-square-mile plume of contaminated groundwater.  A critical component of the Arid-
ID program involves assessing the impact of spatial heterogeneity of subsurface materials on
remediation processes and evaluating the effectiveness and efficiency of demonstrated remedial
technologies.  Because of the complexity of subsurface flow and heat transport phenomena, these
assessments and evaluations will require complex numerical tools for their completion. 
Numerical tools allow scientists and engineers to integrate the current knowledge of contaminant
behavior in the subsurface environment to predict and evaluate the performance of proposed
remediation methods against established technologies.

A principal subtask of the Arid-ID program involves the development of an engineering
simulator (numerical tool), which is capable of numerically simulating proposed remediation
processes.  The design goals are that the engineering simulator will 1) be accessible and
exploitable to scientists and engineers familiar with subsurface environment phenomena, but not
necessarily numerical modeling technicalities, 2) have enough general applicability to recruit a
user group that is capable of supporting training, maintenance, and enhancement activities, 3) be
verified by comparisons to analytical solutions and benchmarked against existing simulators, 
4) be validated against germane laboratory and field experiments, and 5) have controlled
configuration and documentation under an appropriate quality assurance program.  The STOMP
simulator attempts to achieve the five design goals described above.  

This document, an updated Theory Guide, is one of three companion documents. It has
been written to provide users of the STOMP simulator with information about the solved
governing and constitutive equations, numerical algorithms, and solution techniques.  The second
companion document, the STOMP Applications Guide [Nichols et al. 2000], provides users of
the STOMP simulator with applications of the simulator to classical groundwater problems.  The
third companion document, the STOMP User Guide [White and Oostrom 2000], provides users

1Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of
Energy under Contract DE-A-C06-76RLO 1830.
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of the STOMP simulator with necessary information for selecting an appropriate operational
mode, understanding the code flow path and design, creating input files, dimensioning the
executable, compiling and executing, and interpreting simulation outputs.

Numerical models for subsurface flow and transport generate quantitative descriptions of
physical processes in porous media.  These numerical models are frequently classified as
empirical, semi-empirical, or fundamental.  Empirical models typically are developed from
experimental measurements and functionally describe a specific relationship between intrinsic
properties (e.g., saturation-capillary pressure relation).  Semi-empirical models are typically
developed from observed or experimentally measured quantities and are generally used to predict
the response of a particular system.  Fundamental models describe flow and transport
phenomena through accepted physical laws (e.g., conservation equations, Darcy flow equation). 
Generally, fundamental models have a broader range of applicability than semi-empirical models. 
The STOMP simulator primarily comprises fundamental and empirical models.  Fundamental
models are used to describe subsurface flow and transport phenomena through the governing
conservation equations for mass and energy.  Empirical models and semi-empirical models, to a
lesser degree, are used to define relationships among the primary and secondary variables.

This document describes the application of the fundamental, empirical, and semi-
empirical models to the solution of subsurface flow and transport problems as formulated in the
STOMP simulator.  Following a capabilities overview discussion, the organization of this
document proceeds from theory to practice.  Theory discussions begin with descriptions of the
fundamental models of the simulator, which are the conservation equations for component mass,
salt mass, energy, and solute mass.  These governing equations for subsurface flow and transport
are presented in partial differential form.  Following this introduction of the fundamental
equations, are discussions of the empirical and semi-empirical models which comprise the
constitutive relations.  The constitutive relations provide functional links between the primary
and secondary variables of the governing equations.  These equations also provide the means for
completely specifying the thermodynamic and hydrologic state within a porous media system
given a sufficient number of independent intensive property values.  The next section describes
the relationships between thermodynamic and hydrologic states and primary variables.  This
section specifically describes the criteria for choosing primary variable sets as a function of the
operational mode and phase condition and precedes the discussions on numerical solution
techniques.  The numerical solution discussions completely document the transformation of the
fundamental and empirical equations into nonlinear algebraic equations using discretization and
linear algebraic equations using Newton-Raphson iteration.  These discussions also include
descriptions of the solution techniques for linear systems available with the STOMP simulator. 
This guide concludes with an overview of the code architecture which provides the final link
between theory and practice.  This section specifically describes the sequence of numerical
solution stages and iterative loops.  Flow diagrams for the coupled flow and transport solution
and the secondary solute transport solution are also included.
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The fundamental equations presented in this guide will probably remain unchanged
throughout the life of the simulator, with the exception of specialty modules added to address
unique problems or processes.  The empirical equations, in particular the constitutive relations,
however, are undoubtedly expected to change over time with the development of new theoretical
models from experimental research.  The modular form and numerical solution scheme of the
STOMP simulator is suited for these types of changes.  Advances in numerical solution schemes
for nonlinear systems, in particular those involving phase transitions, are anticipated during the
life of the STOMP simulator.  Adapting the simulator to incorporate these advances will
probably occur, because execution speed is a primary concern with users.  With these code
modifications on the horizon, this document will necessarily change and experience several
editions.
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2.0  Fundamentals

2.1  Introduction

The STOMP simulator has been designed to solve a wide variety of nonlinear, single- or
multi-phase, flow and transport problems for variably saturated geologic media.  Partial
differential conservation equations for component mass, energy, and solute mass comprise the
fundamental equations for the simulator.  Coefficients within the fundamental equations are
related to the primary variables through a set of constitutive relations.  The conservation
equations for component mass and energy are solved simultaneously, whereas the solute
transport equations are solved sequentially after the coupled flow solution.  The variable source
code configuration allows the user to select the combination of solved fundamental equations. 
The current version (Version 2.0) of the STOMP simulator recognizes ten coupled flow equation
combinations and the single-phase Water mode (Table 2.1).  Each coupled flow equation
combination is referred to as an operational mode and may additionally include the solution of a
number of transported solutes.  The associated constitutive relations for each recognized
operational mode are automatically incorporated into the source code as required.

In reading this document, it is important to distinguish between phases and components,
which comprise phases.  The terms aqueous, gas, nonaqueous phase liquid (NAPL), ice, and solid
will be used exclusively in referring to phases.  The terms water, air, oil, salt and surfactants will
be used to refer to components.  The aqueous phase will be primarily comprised of liquid water
with dissolved air, oil, salt and surfactant.  The gas phase composition can been highly variable
containing air, water vapor, and oil vapor. The NAPL phase will primarily be comprised of one
oil with negligible amounts of dissolved water and air.  The ice phase is assumed to be comprised
of frozen water with small amounts of dissolved air and oil.  The solid phase refers to the
rock/soil matrix.  Oil, salt, surfactant, and transported solutes can be sorbed onto the solid phase.

The STOMP simulations are limited in application scope according to the solved
fundamental equations, the associated constitutive theory, inherent assumptions, computer
execution speed and memory, and the user’s creativity.  A critical component to correct
application of the STOMP simulator and comprehension of output results requires an
understanding of the assumptions taken to develop the various flow and transport algorithms. 
The simulator is capable of predicting flow and transport behavior for a variety of subsurface
systems; however, application of the simulator to problems which violate an inherent
assumption in the simulator’s design or fundamental equations could yield incorrect results. 
STOMP is principally limited to flow through variably saturated porous media, which can be
characterized with an extended form of Darcy’s law.  Additionally, the simulator is limited to a
maximum of three immiscible phases: aqueous, nonaqueous liquid, and gas.  Low solubilities are
assumed for the liquid phases. Interphase mass transfer assumes equilibrium conditions or first-
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order kinetics.  Specific to the energy equation, the principal assumptions are that heat transport
by gas-phase conduction and the kinetic nature of thermodynamic processes are neglected. 
Solute transport solutions are computed sequentially to the coupled flow equations.  This
approach requires the assumption that solutes are passive scalars with respect to the flow
equations, which is equivalent to assuming solute concentrations are dilute.

The STOMP simulator solves transient flow and transport problems in the subsurface
environment in one, two, or three dimensions.  Coordinate systems must be orthogonal and
currently are limited to Cartesian, tilted Cartesian, and cylindrical, where the vertical coordinate
of the cylindrical system must be aligned with the gravitational vector.  The STOMP simulator
solves steady-state problems either directly or through false-transients starting from a user-
specified initial state.  Direct solutions to steady-state problems are possible for initial conditions
sufficiently close to the solution; therefore, transient solutions to steady-state conditions are the
recommended approach.  All boundary conditions, sources, and sinks are time variant and allow
the user considerable control over transient simulations.  Hydrogeologic properties can be
spatially varied throughout the computational domain within the resolution of a node volume. 
Hydraulic and thermal transport properties for the porous medium can be anisotropic, where the
diagonal tensor elements are assumed to be aligned with the principal axes of the coordinate
system.  Coupled flow solutions can be obtained for selected one-, two-, or three-phase systems
under isothermal or nonisothermal conditions.  Transport of radioactive solutes with chain-decay
tracking can be coupled to all transport solutions with the assumption of dilute solute
concentrations.  A variety of boundary conditions are available for each operational mode, which
may be applied selectively over the boundary surfaces.  Unspecified boundary surfaces are
always assumed to be zero flux surfaces.  Inactive nodes can be specified by the user and
boundary conditions can be applied to surfaces separating active (computational) and inactive
(noncomputational) nodes.  Selected operational modes allow the user to invoke a dynamic
domain option which temporarily sets quiescent nodes to an inactive set, thus removing them
from the computational domain.  

The fundamental coupled flow equations are solved following an integral volume finite-
difference approach with the nonlinearities in the discretized equations resolved through Newton-
Raphson iteration.  Linear systems which result from the Newton-Raphson linearization or the
solute transport solution can be solved with a direct banded matrix solver or an indirect conjugate
gradient-based solver.  these linear system solvers are commercially available software products
that have been adapted for the particulars of the STOMP simulator.  The STOMP simulator
allows considerable control over simulation parameters related to convergence, time stepping,
solution techniques, and execution limits.  A single simulation can be divided into multiple
execution periods, each with a different set of solution control parameters.  Restart capabilities
have also been included in the simulator, which can resume a simulation from user-defined points
with or without alterations to input parameters.  Output from the simulator can be completely
controlled by the user and is written both to files and to the standard input/output device (e.g.,
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screen).  Output forms include time histories of selected variables, time “snapshots” of selected
variables across the computational domain, and variable integrals for sources and fluxes across
boundary and internode surfaces.

The dominant nonlinear functions within the STOMP simulator are the relative
permeability-saturation-capillary pressure (k–s–P ) relations.  The STOMP simulator allows the
user to specify these relations through a large variety of retention functions.  Two-phase (water-
air) k–s–P relations can be specified with nonhysteretic functions, nonhysteretic tabular data, or
relations that account for gas entrapment. Two-phase k–s–P relations span both saturated and
unsaturated conditions.  The aqueous phase is assumed to never completely disappear through
extensions to the s–P function below the residual saturation and a vapor pressure lowering
scheme.  Three-phase (aqueous-NAPL-gas) k–s–P relations can be specified with nonhysteretic
functions or relations that account for gas/NAPL entrapment.  Tabular three-phase k–s–P
relations are not currently available. The wettability order for fluids in the STOMP simulator is
assumed to follow the descending order aqueous to NAPL to gas. Three-phase k–s–P relations
span both total-liquid saturated and unsaturated conditions and aqueous saturated and
unsaturated conditions.  Phase appearances and disappearances are possible for the gas and
NAPL phases; however, the aqueous phase is assumed to never completely disappear through
extensions to the s–P function below the residual saturation and a vapor pressure lowering
scheme.

2.2  Operational Modes

The STOMP simulator operational modes do not comprise all of the possible
combinations of coupled governing equations.  The combination sets of coupled governing
equations selected for inclusion in the list of operational modes represent those with the greatest
utility for physical systems.  For example, a Water-Energy operational mode could be
envisioned, which solved the water mass and energy conservation equations.  This operational
mode would invoke the assumption of a nonparticipating gas phase.  Two-phase flow and
transport through porous media under thermal gradients, however, strongly depends on the
diffusion, dispersion, and advection transport through gas phase, even for low thermal gradients. 
Therefore, this operational mode, while capable of functioning and producing converged
solutions, would have limited utility because of its premise that gas phase transport could be
neglected.  Other combinations of governing equation sets with associated assumptions have
considerable utility for specific systems or problems and have been coded, but have not been
selected for inclusion in the STOMP guide manuals.  For example, an operational mode has been
created that solves the water mass, air mass, oil mass, and/or energy equation with the
assumption that oil concentrations remain below the aqueous solubility limit.  This operational
mode has utility in the investigation of the remediation of oil contaminants in dissolved plumes. 
This operational mode differs from one which models the oil as a dilute solute because 1) the oil
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mass equation is solved simultaneously with the other coupled flow equations and 2) fluid
properties have a dependence on the oil concentration.  

Operational modes support solute transport calculations and are identified according to
the coupled conservation equations that are solved.  The solved conservation equations and
primary assumptions are summarized in Table 2.1 for each operational mode.  Beyond the set of
solved coupled equations, some of the operational modes have unique features developed for
specific applications.  The Water operational mode contains an optional dynamic domain feature.
This feature converts relatively invariant nodes into noncomputational or inactive nodes,
therefore improving execution performance.  With this feature, all active nodes are included in the
computational set during the initial iteration.  If the residual for the water mass conservation
equation for a particular node is less than a specified limit, then that node becomes inactive for
the remainder of iterations within the time step.  The Water operational mode additionally
contains two algorithms for computing the partitioning of transported solutes between the solid
and aqueous phases.  The first approach assumes that the solid surface is continuously wet
independent of the aqueous saturation; whereas the second approach assumes that the wetted
surface is proportional to the aqueous saturation.  This operational mode also includes a feature
for solute-dependent retardation.  With this feature solid-aqueous partition coefficient for one
solute is dependent on the concentration of another solute.  The feature allows the modeling of
surfactant type reactions between solvents.  The Water-Air operational mode contains a unique
hysteretic air entrapment constitutive theory that allows dissolution and expansion of entrapped
air.  This feature was developed specifically to examine mechanisms for entrapped gas release
from a declining water table.  The Water-Air-Energy operational mode contains models for
computing ice saturations under soil freezing conditions but does not include soil stress processes
necessary to compute mounding and heaving.  This operational mode additionally contains a
feature to correct water vapor pressures for vapor pressure lowering through capillary forces.  
Aqueous saturations less than the residual saturation can occur through application of an
extension to the capillary pressure-saturation constitutive model.  Enhanced vapor diffusion from
thermal gradients can be considered as a function of the thermal gradient, moisture content, soil-
moisture retention function, and soil clay fraction.
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Table 2.1.  Operational Mode Summary

Operational Mode
with Options          Solved Coupled Equations Primary Assumptions

Water water mass isothermal conditions
passive gas phase
no NAPL phase
no dissolved oil
no brine
no surfactant
local thermodynamic equilibrium

Water-Air water mass isothermal conditions
air mass no NAPL phase

no dissolved oil
no brine
no surfactant
local thermodynamic equilibrium

Water-Air-Energy water mass no NAPL phase
w/ Ice air mass no dissolved oil

thermal energy no brine
no surfactant
local thermodynamic equilibrium

Water-Oil water mass isothermal conditions
oil mass single component NAPL phase

passive gas phase
no brine
no surfactant
local thermodynamic equilibrium

Water-Oil-Air water mass isothermal conditions
oil mass single component NAPL phase
air mass no brine

no surfactant
local thermodynamic equilibrium
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Table 2.1.  (Continued)

Operational Mode
with Options          Solved Coupled Equations Primary Assumptions

Water-Oil-Air-Energy water mass single component NAPL phase
oil mass no brine
air mass no surfactant
thermal energy local thermodynamic equilibrium

Water-Oil-Dissolved Oil water mass isothermal conditions
oil mass single component NAPL phase
dissolved oil mass passive gas phase

no brine
no surfactant
kinetic oil dissolution

Water-Oil-Dissolved Oil- water mass isothermal conditions
Surfactant oil mass single component NAPL phase

dissolved oil mass passive gas phase
surfactant mas no brine

kinetic oil dissolution

Water-Salt water mass isothermal conditions
salt mass passive gas phase

no NAPL phase
no dissolved oil
no surfactant
local thermodynamic equilibrium

Water-Air-Salt water mass isothermal conditions
air mass no NAPL phase
salt mass no dissolved oil

no surfactant
local thermodynamic equilibrium

Water-Air-Energy-Salt water mass no NAPL phase
w/ Ice air mass no dissolved oil

salt mass no surfactant
thermal energy local thermodynamic equilibrium
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3.0  Governing Equations

3.1  Introduction

In broad terms, the STOMP simulator solves coupled conservation equations for
component mass and energy that describe subsurface flow over multiple phases through variably
saturated geologic media.  The resulting flow fields are used to sequentially solve conservation
equations for solute transport with radioactive chain decay over multiple phases through variably
saturated geologic media.  These conservation equations for component mass, energy, and solute
are partial differential equations that mathematically describe flow and transport through porous
media and are collectively referred to as the governing equations.  The STOMP simulator has
capabilities for modeling subsurface flow and transport over three distinct phases: aqueous, gas,
and NAPL.  The aqueous phase primarily comprises liquid water with small quantities of
dissolved air and oils.  The gas phase comprises variable amounts of air, water vapor, and oil
vapors.  The NAPL phase comprises liquid oil components with the amounts of dissolved air
and water assumed to be negligible.  Additional conservation equations, termed the salt and
surfactant mass conservation equation, can be solved coupled with the component mass and
energy equations to simulate brines or surfactants.  Because the salt and surfactant mass
conservation equation are solved coupled with the flow and energy transport equations, phase
properties can be dependent on salt and surfactant concentrations.  This approach allows
modeling of systems with brines or surfactants, where the physical properties (e.g., density,
viscosity, relative permeability) are dependent on the salt or surfactant concentration.  In this
respect, the terms salt and surfactant refer to a dissolved and transported solute whose
concentration influences the physical properties of the solvents.  Salts and surfactants differ from
solutes because the primary assumption for solution of the solute transport equation is that
solute concentrations are infinitely dilute.

3.2  Water Mass Conservation Equation

The water mass conservation equation, shown in Equation (3.2.1), equates the time rate
of change of water mass within a control volume with the flux of water mass crossing the control
volume surface.  In the STOMP simulator water exists in the diffusive pore space as liquid water
and water vapor, in the aqueous and gas phases, respectively.  Dissolution of water in the NAPL
phase is neglected.  Phase partitioning of water mass is computed assuming equilibrium
conditions, implying that in geologic media the time scale for thermodynamic equilibrium is
significantly shorter for component transport.  Water transport occurs by advection through the
aqueous and gas phases and by diffusion-dispersion through the gas phase.  Following the low
solubility assumption for dissolved air and oil in the aqueous phase, water diffusion-dispersion
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through the aqueous phase is neglected.  Flow of fluid phases is computed from Darcy’s law. 
Transport of phase components is computed from a modified form of Fick’s law, where a
combined diffusion-dispersion coefficient replaces the classical Fickian diffusion coefficient. 
Equation (3.2.1) includes an osmotic flux term, which accounts for the flow of aqueous fluid by
osmotic pressure for simulations with coupled salt transport.
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3.3  Air Mass Conservation Equation

The air mass conservation equation, shown in Equation (3.3.1), equates the time rate of
change of the air mass within a control volume with the flux of air mass crossing the control
volume surface.  In the STOMP simulator, air exists in the diffusive pore space as a component
of the gas phase and dissolved in the aqueous phase.  Dissolution of air in the NAPL is neglected.
Phase partitioning of air mass is computed assuming equilibrium conditions: this assumption
implies that in geologic media the time scale for thermodynamic equilibrium is significantly
shorter than that for component transport.  Air transport occurs by advection and diffusion-
dispersion through the aqueous and gas phases.  Flow of fluid phases is computed from Darcy’s
law.  Transport of phase components is computed from a modified form of Fick’s law, where a
combined diffusion-dispersion coefficient replaces the classical Fickian diffusion coefficient.
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3.4  Oil Mass Conservation Equations

The oil mass conservation equation for the Water-Oil, Water-Oil-Air, and Water-Oil-Air-
Energy modes is shown in Equation (3.4.1).  This equation equate the time rate of change of oil
mass within a control volume with the flux of oil mass crossing the control volume surface.  In
these four modes, oil exists in the diffusive pore space as liquid oil in the NAPL phase, dissolved
oil in the aqueous phase, and as oil vapor in the gas phase.  Phase partitioning of oil is computed
assuming equilibrium conditions: this assumption implies that in geologic media, the time scale
for thermodynamic equilibrium is significantly shorter than that for component transport.  Oil
transport occurs by advection and diffusion-dispersion through the aqueous, gas, and NAPL
phases.  Flow of fluid phases is computed from Darcy’s law.  Transport of phase components is
computed from a modified form of Fick’s law, where a combined diffusion-dispersion coefficient
replaces the classical Fickian diffusion coefficient.
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In the Water-Oil-Dissolved Oil and the Water-Oil-Dissolved Oil-Surfactant mode, the
continuity equation for the oil component in the NAPL phase is used, as shown in equation
(3.4.2). Oil transport occurs by advection in the NAPL phase. Interphase mass transfer of oil
between the NAPL and aqueous phases is computed with a convective mass transfer relation.
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The dissolved oil conservation equation associated with equation (3.4.2) is shown in

equation (3.4.3)
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3.5  Energy Conservation Equation

The energy conservation equation, shown in Equation (3.5.1), equates the time rate of
change of energy within a control volume with the flux of energy crossing the control volume
surface.  In the STOMP simulator, thermal energy is partitioned, according to thermal equilibrium
conditions, among the fluid and solid phases.  The thermal capacitance of unconnected pore
space, represented by the difference between the total and diffusive porosity, is computed as it is
filled with liquid water.  Heat transfer occurs by advection of phase mass, diffusion of
component mass, and thermal diffusion through the fluid and solid phases.  Heat transfer by
hydraulic dispersion of flowing fluid phases is neglected.  Enhanced vapor transport is
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incorporated through enhancement factors for component diffusion through the gas phase. 
Energy associated with component mass sources are included as internal heat generation sources. 
Reference states for enthalpy and internal energy are component dependent.  Latent heat
transport is considered through vapor transport through the gas phase and equilibrium
thermodynamics.
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3.6  Salt Mass Conservation Equation

The salt mass conservation equation, shown in Equation (3.6.1), equates the time rate of
change of salt mass within a control volume with the flux of salt mass crossing the control volume
surface.  In the STOMP simulator, salt mass is partitioned among the fluid and solid phases
assuming thermodynamic and geochemical equilibrium conditions.  This assumption implies that
the time scales for thermodynamic and geochemical equilibrium are short compared against those
for salt transport.  For geologic media, this assumption is generally appropriate.  Salt transport
occurs by advection and diffusion-dispersion through the aqueous phase.  Solubility of salt in the
gas phase is neglected.  This formulation neglects an effect known as pressure diffusion [Bird et
al. 1960], which accounts for dispersive salt mass flux due to phase pressure gradients.

  
S

t
 =  −∇ Sl Vl[ ] +∇ l sl nD Dl

S + sl nD Dhl( ) ∇ Sl[ ] + ˙ m S (3.6.1)

where,
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Vl  =  −

krl k

l
∇ Pl + l g zg( )

3.7  Surfactant Mass Conservation Equation

The surfactant mass conservation equation, shown in Equation (3.7.1), equates the time
rate of change of surfactant mass within a control volume with the flux of surfactant mass
crossing the control volume surface.  In the STOMP simulator, surfactant mass is partitioned
among the fluid and solid phases assuming thermodynamic and geochemical equilibrium
conditions.  This assumption implies that the time scales for thermodynamic and geochemical
equilibrium are short compared against those for surfactant transport.  For geologic media, this
assumption is generally appropriate.  Surfactant transport occurs by advection and diffusion-
dispersion through the aqueous phase.  Solubility of surfactant in the gas phase is neglected. 
This formulation neglects an effect known as pressure diffusion [Bird et al. 1960], which
accounts for dispersive surfactant mass flux due to phase pressure gradients.

  
S

t
 =  −∇ Sl Vl[ ] +∇ l sl nD Dl

S + sl nD Dhl( ) ∇ Sl[ ] + ˙ m S (3.7.1)

where,

  
Vl  =  −

krl k

l
∇ Pl + l g zg( )

3.8  Solute Mass Conservation Equation

The solute conservation equation, shown in Equation (3.8.1), equates the time rate of
change of solute within a control volume with the flux of solute crossing the control volume
surface.  In the STOMP simulator, solute is partitioned among the fluid and solid phases
assuming thermodynamic and geochemical equilibrium conditions.  This assumption implies that
the time scales for thermodynamic and geochemical equilibrium are short compared against those
for solute transport.  For geologic media, this assumption is generally appropriate.  Solute
transport occurs by advection and diffusion-dispersion through the aqueous phase, gas phase,
and NAPL.  Radioactive chain decay of solutes is computed using first-order decay kinetics.
Progeny solute production rates are computed from parent decay rates and chain decay fractions.
Chemical reactions occur according to first-order or Monod-type kinetics.  Solute conservation
equations are solved sequentially with progeny or product solutes preceding parent or primary
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reactant solutes.  

  

C
t

 =  −  ∇ C V[ ]( )
= l,g,n
∑ + ˙ m C − ˙ R C C

+  ∇ s nD DC + s nD Dh( ) ∇ C[ ] 
 

 
 

= l,g,n
∑

(3.8.1)

where,

  
V  =  −

kr k
∇ P + g zg( )  for = l, g, n
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4.0  Constitutive Relations

4.1  Introduction

Constitutive relations are functions that relate the primary unknowns of the governing
equations to the associated secondary variables.  Each governing equation is solved for a single
variable that is referred to as the primary unknown.  The remaining variables in the governing
equation are referred to as secondary variables.  A closed system requires that all of the
secondary variables be computable from the set of primary unknowns.  In the STOMP simulator
primary variables (unknowns) for a particular governing equation can vary between operational
modes and phase conditions; however, the set of primary unknowns is fixed for each operational
mode and phase condition combination.  Primary unknowns are macroscopic properties that fix
the physical state of the system.  The thermodynamic state of the system is independent of the
path by which the system arrived at the given state; however, the saturation state of the system
may be dependent on the prior saturation history.  Secondary variables include intensive and
extensive properties (e.g., phase saturation, phase relative permeability, porosity, tortuosity,
viscosity, density, enthalpy, saturated vapor pressures, vapor mass fractions, and diffusion
coefficients).  Because secondary variables are often computed in terms of other secondary
variables, the calculation order for secondary variables is critical to closing the thermodynamic
and hydrologic system.  Each operational mode and phase condition combination follows a
specified sequence for computing secondary variables from the primary variables.  This section
documents the functions available in the STOMP simulator for computing secondary variables. 
The subsections are ordered in the most frequent calculation sequence for secondary variables.

4.2  Gas-Phase Pressure

For liquid-vapor equilibrium conditions the vapor pressure exerted by a component can
be computed from the saturated vapor pressure of the component as a function of temperature
and the component’s molar concentration in the liquid phase.  Because of the low solubility
assumption associated with the STOMP simulator for oil solubility in the aqueous phase, the
water vapor pressure equals its saturated vapor pressure.  For hydrologic saturation conditions
with strong capillary pressures, the saturated water vapor pressure is lowered according to the
vapor pressure lowering formulation [Nitao 1988].  Compositional NAPL contains a mixture of
liquid-oil components.  According to Raoult’s Rule for multicomponent, multiphase equilibrium
[Van Wylen and Sonntag 1978] the vapor pressure for each oil is computed from its saturated
vapor pressure and mole fraction in the NAPL phase, where each component’s saturated vapor
pressure is computed as a function of temperature.

4.1



4.2.1  Water Vapor Pressure

The STOMP simulator assumes the presence of liquid water and the equilibrium
condition of liquid water and water vapor.  Water vapor pressure is computed from saturated
water vapor pressure as a function of temperature and the hydrologic aqueous saturation state. 
Saturated water vapor pressure is computed as a function of temperature from the steam table
equations [ASME 1967], according to Equation (4.2.1).  Numerical values of the critical
properties for water and saturated water vapor pressure function constants are listed in Tables
A.1 and A.2, of Appendix A, respectively.  The saturated water vapor pressure function is
shown graphically in Figure (4.1).  The water vapor pressure is computed as a function of the
saturated vapor pressure and capillary pressure from the expression for vapor pressure lowering
[Nitao 1988], according to Equation (4.2.2).  The vapor pressure lowering function is shown
graphically in Figure (4.2).  The effect of total system pressure on the vapor pressure, the
Poynting effect [Wark 1995], is computed using the assumption that the gas phase behaves as an
ideal solution and an ideal-gas mixture according to Equation (4.2.3).  Water vapor pressure is
relatively insensitive to changes in total system pressure.  For example, at 20 C a total system
pressure of over 1700 times the saturated vapor pressure value is required to yield a 3 percent
change in the vapor pressure.
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where,

X  =  1 −
T

Tc
w

  
P g

w  =  Psat
w  exp 

−Pcap

l  Rl  T

 

  
 

  (4.2.2)
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 

 
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 
 =
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R T l
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4.2.2  Oil Vapor Pressure

Saturated oil vapor pressure is computed as a function of temperature by the Wagner
equations [Reid et al. 1987], according to Equations (4.2.4) through (4.2.7).  Oil-saturated vapor
pressure function constants and critical properties of pressure and temperature are determined
experimentally and have been tabulated for numerous inorganic and organic compounds in Reid et
al. [1987].  It should be noted that Equation (4.2.5) is nonlinear and requires an iterative solution
technique.  The saturated vapor pressure function for carbon tetrachloride is shown graphically in
Figure (4.3), according to Equation (4.2.4).  Numerical values of vapor pressure function
constants and critical properties are listed in Table A.3 of Appendix A.  Oil vapor pressure is
computed as a function of NAPL-phase concentration according to Raoult’s Law [Van Wylen
and Sonntag 1978], according to Equation (4.2.7).  The effect of total system pressure on the oil
vapor pressure and the Poynting effect [Wark 1995], is computed using the assumption that the
gas phase behaves as an ideal solution and an ideal gas mixture according to Equation (4.2.8).

Psat
o  =  Pc

o  
a X + b X1.5 + c X3 + d X6

1 − X

 

  
 

  (4.2.4)
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o
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4.2.3  Air Pressure

The air pressure is computed from Dalton’s partial pressure law for ideal gas mixtures
[Van Wylen and Sonntag 1978], according to Equation (4.2.9).

Pg
a  =  Pg  −  Pg

w  −  Pg
o (4.2.9)

4.2.4  Brine Vapor Pressure

The vapor pressure depression that occurs with the addition of a solute to a pure solvent
for an ideal solution, is used to calculate the water vapor pressure above an aqueous solution of
sodium chloride according to Equation (4.2.10).

  
Pg

wS
 =  1 − l

S( ) Pg
w (4.2.10)

4.3  Density

Gas-phase densities are computed according to Dalton’s ideal gas law for mixtures [Van
Wylen and Sonntag 1978], where the sum of the gas component partial pressures equals the total
gas pressure.  The low solubility assumption for air and oil solubility in the aqueous phase
allows the aqueous-phase density to be approximated with the density of liquid water. 
Compositional NAPL contains a mixture of liquid-oil components.  NAPL-phase density is
computed from the pure component liquid-oil densities and molar concentrations within the
NAPL phase.

4.3.1  Gas-Phase Density

Component vapor densities are computed according to the ideal gas law, as shown in
Equation (4.3.1).  Gas-phase density equals the sum of the component densities, according to the
ideal gas law shown in Equation (4.3.2).

g
j  =  

Pg
j

R j T
,  for  j = w,a,o (4.3.1)
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g  =   g
j

j = w,a,o
∑ (4.3.2)

4.3.2  Aqueous-Phase Density

Aqueous-phase density is computed as a function of temperature and pressure using the
steam table formulations [ASME 1967], as shown in Equation (4.3.3).  With the low solubility
assumption, aqueous phase density is independent of dissolved component concentrations. 
Numerical values of the constants shown in Equation (4.3.3) are listed in Table A.4 of
Appendix A.  The aqueous-phase density function using the steam table formulation is shown
graphically in Figure 4.4.  Values below the freezing point are used to compute subcooled
aqueous phase density for freezing conditions in the Water-Air-Energy operational mode.

  l
 =  vc

w  A11  a5  Z−5/17 +  A12  +  A13  Tr
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(4.3.3)
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4.3.3  NAPL-Phase Density

Liquid oil density for saturated conditions is computed as a function of temperature using
the Modified Rackett method [Reid et al. 1987], according to Equation (4.3.4).  If an experimental
value for liquid density is available, then the recommended form of the Rackett function appears
as shown in Equation (4.3.5).  The saturated liquid density function for carbon tetrachloride is
shown graphically in Figure 4.5.  A correction for compressed conditions is made following the
Hankinson-Brobst-Thompson (HBT) technique [Reid et al. 1987], according to Equation (4.3.6).
Numerical values for the coefficients shown in Equation (4.3.6) are listed Table A.5 of
Appendix A.  Compositional NAPL contains a mixture of liquid-oil components.  NAPL-phase
density is computed as a function of the pure component liquid densities and molar
concentrations in the NAPL phase according to Equation (4.3.7).  Alternatively, mixing rules for
the Rackett equation have been published [Reid et al.1987] which define the critical pressure,
critical temperature, and critical compressibility for a liquid mixtures, according to Equations
(4.3.8) through (4.3.10) respectively.  NAPL-phase density for a compositional NAPL is then
computed as a function of temperature and pressure using the Modified Rackett and HBT
methods shown in Equations (4.3.4) through (4.3.6) by substituting the mixture critical
properties for the component critical properties.
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where,
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4.3.4  Ice Density

Ice density is computed as a function of temperature from empirical correlation of 
ASHRAE [1977] data, according to Equation (4.3.10).  The correlation is valid over the
temperature range from -100 C to 0 C.

i  =  1.06472 x 10−3 + 1.23173 x 10−8 T + 3.0203 x 10−10 T2[ ]−1
(4.3.11)

4.3.5  Brine Density

Liquid density for an aqueous solution of sodium chloride is computed as a function of
salt mass fraction from an empirical relation [Leijnse 1992] according to Equation (4.3.11), where
the aqueous density is computed as a function of temperature and pressure according to
Equation (4.10).

  l
S  =  l exp 0.7 l

S( ) (4.3.12)

4.4  Mass and Mole Fractions

Aqueous-phase component fractions are computed assuming equilibrium conditions and
low solubilities of dissolved components according to Henry’s Law [Reid et al. 1987].  Gas-
phase component fractions are computed from the ratio of component vapor density to gas-
phase density.  Zero solubilities are assumed for water and air components in the NAPL phase. 
Compositional NAPL contains mixtures of liquid-oil components.  For a compositional NAPL
phase the component partial pressures are the primary unknowns for all but one oil mass
conservation equation.  Conversion between mass and mole fraction is computed according to
Equations (4.4.1) and (4.4.2).

j  =  
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M j
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Mk
k = w,a,o
∑
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j  =  

j M j

 k Mk

k = w,a ,o
∑

(4.4.2)

4.4.1  Gas-Phase Component Fractions

Gas-phase mass fraction is computed from the ratio of component vapor density to gas-
phase density for water and oils, according to Equation (4.4.3).  Component vapor density and
gas-phase density are computed as a function of component partial pressure and temperature
according to Equations (4.3.1) and (4.3.2), respectively.  Gas-phase mass fractions sum to one;
therefore, the air mass fraction is computed according to Equation (4.4.4).

g
j  =  

g
j

g
,  for  j = w,o (4.4.3)

g
a  =  1 −  g

j

j = w,o
∑ (4.4.4)

4.4.2  Aqueous-Phase Component Fractions

Aqueous-phase mole fraction is computed assuming equilibrium conditions and low
solubilities for the dissolution of air and oils in water.  Under these conditions, the partial
pressure of a component in the gas phase is proportional to its mole fraction in the aqueous
phase, through a temperature and pressure-dependent proportional constant known as Henry’s
constant [Sandler 1989].  Henry’s law relates the air and oil component partial pressures to their
mole fraction concentrations in the aqueous phase.  Henry’s law is limited to low solubilities
because at moderate to high solute concentrations Henry’s constant becomes dependent on solute
concentration.  Aqueous-phase mole fractions for air and oil components are computed according
to Equation (4.4.5).  The solubility of a component in water is typically a complex function of
temperature which may decrease or increase with temperature.  Generally, the solubility of oils
increase with increasing temperature; whereas the solubility of noncondensible gases (e.g., air)
decrease with increasing temperature.  With adequate experimental data the functional
dependence of aqueous solubility on temperature may be included, with the general form for
temperature dependence shown in Equation (4.4.6).  In the absence of adequate experimental
solubility data, Henry’s constant for a slightly soluble oil can be estimated from a single
measurement of aqueous solubility and saturated vapor pressure [Reid et al 1987], according to
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Equation (4.4.7).  Aqueous-phase mole fractions sum to one; therefore, the water mole fraction is
computed according to Equation (4.4.8).

  
l
j  =  

Pg
j

Hgl
j ,   for  j = a, o (4.4.5)
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l
o (4.4.6)

  l
o  =  a + b T + c T2 + d T3 (4.4.7)

  
l
w  =  1 −  l

j

j = a,o
∑ (4.4.8)

4.4.3  NAPL-Phase Component Fractions

The solubilities of air and water in the NAPL phase are assumed to be very small and are
neglected in the STOMP simulator.  Compositional NAPL contains mixtures of liquid-oil
components.  For compositional NAPL the component partial pressures are the primary
unknowns for all but one oil mass conservation equation.  Conversion between component partial
pressure and component mole fraction in the NAPL phase is computed assuming equilibrium
conditions using Raoult’s law, as shown in Equation (4.4.9).  The remaining uncomputed
component mole fraction in the NAPL phase is determined from the requirement that the sum of
the mole fractions equals one, as shown in Equation (4.4.10).

Pg
o  =  n

o  Psat
o (4.4.9)

 n
j

j

o

∑  =  1 (4.4.10)

4.4.4  Salt Solubility

Saturated solubilities in aqueous solutions for solutes that ionize either completely (e.g.,
strong salts like sodium chloride) or partially (e.g., sulfur dioxide and acetic acid) are computed as
a function of temperature from empirical fits [Reid et al. 1987] of experimental data, according to
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Equation (4.4.11).  Saturated solubility for salt (sodium chloride) in water as a function of
temperature is shown in Figure 4.6 against experimental data [ Linke 1965].

  
ln l

S( )  =  a +
b

Tr
+ c ln Tr( ) + d Tr (4.4.11)

where,

Tr  =  
T

100 K

4.5  Viscosity

Gas-phase viscosity is dependent on composition, temperature, and pressure.  The
STOMP simulator computes gas-phase viscosity with an extension of the Chapman-Enskog
theory for multicomponent gas mixtures at low densities [Reid et al. 1987].  Aqueous-phase
viscosity is assumed independent of composition, and is determined for pure water as a function
of temperature and pressure from the steam table formulations [ASME 1967].  Liquid oil
viscosity is determined from the Lewis-Squires chart formulation [Reid et al.  1987]. 
Compositional NAPL contains mixtures of liquid-oil components.  For compositional NAPL the
liquid viscosity is computed using the Grunberg and Nissan method for liquid mixtures [Reid et
al. 1987].

4.5.1  Gas-Phase Viscosity

Gas-phase viscosity depends on composition and temperature according to an extension
of the Chapman-Enskog theory, which was proposed by Wilke for multicomponent gas mixtures
at low densities [Bird et al. 1960].  This semi-empirical expression combines component vapor
viscosities, gas-phase mole fractions, and component molecular weights into a gas mixture
viscosity.  Component vapor viscosities are computed separately as a function of temperature
and pressure.  Air component viscosity is determined as a function of temperature from empirical
correlations [ASHRAE 1977], according to Equation (4.5.1).  Water vapor viscosity is computed
from the steam table formulations [ASME 1967], according to Equation (4.5.2).  Oil vapor
viscosity is determined as a function of temperature and pressure from the Corresponding States
method [Reid et al. 1987], according to Equation (4.5.3).  Component vapor viscosities,
expressed in Equations (4.5.1) through (4.5.3) for air, water, and carbon tetrachloride,
respectively, are shown graphically in Figure 4.7.  The computed component vapor viscosities
are subsequently combined, according to the modified Chapman-Enskog theory, to determine the
gas-phase viscosity, as shown in Equation (4.5.4).
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4.5.2  Aqueous-Phase Viscosity

Aqueous phase viscosity is computed using the low solubility assumption as a function
of temperature from an empirical expression for liquid water viscosity [Yaws et al. 1976],
according to Equation (4.5.5).  Aqueous-phase viscosity as expressed in Equation (4.5.5) is
shown graphically in Figure 4.8.

  
l  =  exp −24.71 +  

4209.0

T
 +  0.04527 T  −  3.376x10−5  T2 

 
 
 
 x  10−3 (4.5.5)

4.5.3  NAPL-Phase Viscosity

Liquid oil viscosity is computed from empirical functions depending on the available data.
If an experimentally determined value for liquid viscosity is known, then the variation with
temperature is determined according to the Lewis-Squire chart formulation [Reid et al. 1987], 
shown in Equation (4.5.6).  Errors associated with computing the liquid oil viscosity from
Equation (4.5.6) can approach 15%.  Constants have also been published [Reid et al. 1987], that
allow the estimation of liquid oil viscosity according to the forms shown in Equations (4.5.7)
through (4.5.9), where the empirical constants are determined experimentally.  Few estimation
techniques exist for determining NAPL-phase viscosity for a mixture of oils.  Those available are
limited to values of reduced temperature below 0.7.  Moreover, at these temperatures NAPL-
phase viscosity is sensitive to the structure of the constituent molecules, which requires
estimation techniques for computing interaction parameters.  The STOMP simulator uses the
Grunberg and Nissan method [Reid et al. 1987] to determine NAPL-phase viscosity for a mixture
of liquid oils, shown in Equation (4.5.10).  NAPL-phase viscosity, expressed in Equation (4.5.9),
for saturated liquid carbon tetrachloride is shown graphically in Figure 4.9.
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4.5.4  Brine Viscosity

Liquid viscosity of an aqueous solution of sodium chloride is strongly dependent on the
salt mass fraction and is computed as a function of salt mass fraction from an empirical relation
[Leijnse 1992] according to Equation (4.5.11), where the aqueous phase viscosity is computed as
a function of temperature according to Equation (4.5.5).

  
l
S  =  l 1.0 + 1.85 l

S + 4.1 l
S( )2

+ 44.5 l
S( )3 

 
 
 (4.5.11)

4.6  Enthalpy and Internal Energy

Gas-phase enthalpy and internal energy are computed by combining component vapor
quantities according to mass fraction weighing.  The low solubility assumption for dissolved air
and oils allows the aqueous-phase enthalpy and internal energy to be approximated with
quantities for liquid water.  Compositional NAPL contains a mixture of liquid-oil components. 
NAPL-phase enthalpy and internal energy are computed from liquid oil quantities and mass
fractions in the NAPL phase.  Reference states vary among the components, but not between
phases for a particular component.  For water, the internal energy of liquid water at saturated
conditions and 0.01 C is assigned the reference value of 0 J/kg.  For air, the internal energy at 0 C
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is assigned the reference value of 0 J/kg.  For oil components, the internal energy of liquid oil at
saturated conditions and 0 C is assigned the reference value of 0 J/kg.

4.6.1  Gas-Phase Enthalpy and Internal Energy

Gas-phase enthalpy and internal energy are computed from component vapor quantities
and gas-phase mass fractions [Falta et al. 1990a], according to Equations (4.6.1) and (4.6.2). 
Water vapor enthalpy is computed from the steam table formulations as a function of
temperature and pressure, according to Equation (4.6.3).  Numerical values of the water vapor
constants are listed in Tables A.6 through A.8 of Appendix A.  Water vapor internal energy is
computed from its enthalpy using the thermodynamic relationship [Van Wylen and Sonntag
1978] shown in Equation (4.6.4).  Water vapor enthalpy and internal energy as a function of
temperature for saturated conditions according to Equations (4.6.3) and (4.6.4) are shown
graphically in Figure 4.10.  In the STOMP simulator, air is considered a noncondensible gas,
therefore its enthalpy is computed as a function of temperature and pressure from the
thermodynamic property relationship [Van Wylen and Sonntag 1978] shown in Equation (4.6.5).
By neglecting the variation in the constant-volume specific heat with temperature and assigning
the reference point for air as the internal energy at 0 C, the air internal energy is computed
according to Equation (4.6.6).
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a  T (4.6.6)

The reference state for both liquid and vapor oil is the internal energy of liquid oil at 0 C
under saturated conditions.  Oil vapor enthalpy is computed as the sum of the oil liquid enthalpy
and the latent heat of vaporization as shown in Equation (4.6.7).  The change in vapor enthalpy
between saturated conditions and superheated conditions for an ideal gas equals zero; therefore,
the oil vapor enthalpy is only a function of temperature.  Liquid oil enthalpy is computed as a
function of temperature [Van Wylen and Sonntag 1978] according to Equation (4.6.8), where the
integral is evaluated with a two-point Gauss-Legendre quadrature method [Carnahan et al. 1969]. 
The liquid-specific heat is computed as a function of temperature from the ideal specific heat
according to the Rowlinson-Bondi method [Reid et al. 1987], as shown in Equation (4.6.9). 
Coefficients for the ideal liquid-specific heat are empirically determined constants, developed
from the method of Joback and published for numerous organic and inorganic compounds by
Reid et al. [1987].  The heat of vaporization for oils is computed in two stages.  During the first
stage, the heat of vaporization for the normal boiling point is computed following the method of
Chen [Reid et al. 1987], according to Equation (4.6.10).  In the second stage, the heat of
vaporization for temperatures, other than the normal boiling point, is computed following a
correction method developed by Watson [Reid et al. 1987], according to Equation (4.6.11).  Oil
vapor internal energy is computed from its enthalpy using the thermodynamic relationship [Van
Wylen and Sonntag 1978] shown in Equation (4.6.12).  Vapor enthalpy and internal energy for
carbon tetrachloride as a function of temperature for saturated conditions, are presented 
Equations (4.6.7) and (4.6.12) and shown graphically in Figure 4.11.
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4.6.2  Aqueous-Phase Enthalpy and Internal Energy

Aqueous-phase enthalpy and internal energy are computed using the low solubility
assumption as a function of temperature from the steam table formulations [ASME 1967],
according to Equation (4.6.13).  The reference point for the aqueous phase and water vapor
enthalpy and internal energy is the internal energy of liquid water at 0.01 C.  Because water is
nearly incompressible, the difference between aqueous-phase enthalpy and internal energy are
neglected.  Numerical values of the constants shown in Equation (4.6.13) are listed in Table A.4
of Appendix A.  Aqueous-phase enthalpy is shown graphically in Figure 4.12.
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4.6.3  NAPL-Phase Enthalpy and Internal Energy

Liquid-oil enthalpy is computed as a function of temperature [Van Wylen and Sonntag
1978] according to Equation (4.6.8), where the integral is evaluated with a two-point Gauss-
Legendre quadrature method [Carnahan et al. 1969].  The liquid-specific heat is computed as a
function of temperature from the ideal specific heat according to the Rowlinson-Bondi method
[Reid et al. 1987], as shown in Equation (4.6.9).  Coefficients for the ideal liquid-specific heat are
empirically determined constants, developed from the method of Joback and published for
numerous organic and inorganic compounds by Reid et al. [1987].  The reference state for both
liquid and vapor oil is the internal energy of liquid oil at 0 C under saturated conditions. 
Saturated liquid enthalpy for carbon tetrachloride, as a function of temperature according to
Equation (4.6.8), is shown graphically in Figure 4.13.  NAPL-phase enthalpy for a mixture of
liquid oils is computed from the mass fraction weighted sum of the oil component liquid
enthalpies shown in Equation (4.6.14).

hn  =  n
j hn

j

j

o

∑ (4.6.14)

4.6.4  Ice Enthalpy and Internal Energy

Ice enthalpy is computed as a function of temperature from empirical correlation of 
ASHRAE [1977] data, according to Equation (4.6.15).  The correlation is valid over the
temperature range from -100 C to 0 C.  The reference point for the ice enthalpy and internal
energy is the internal energy of liquid water at 0.01 C.  Because ice is nearly incompressible, the
difference between ice enthalpy and internal energy is neglected.

hi  =  ui  =  − 6.36443 x 105 + 1.14468 x 102 T + 3.64104 T2 (4.6.15)

4.6.5  Brine Enthalpy and Internal Energy

Liquid enthalpy for a aqueous solution of sodium chloride is computed as a function of
temperature and salt concentration using empirical corrections [Pitzer et al. 1984] to the ideal
solution equation for enthalpy of dilution and solution according to Equation (4.6.16).  The
reference states for Equation (4.6.16) are the internal energy of liquid water at 0.01 C for water
and crystalline solid at 298.15 K for salt (NaCl).  The standard state enthalpy for salt as a
function of temperature is computed from the empirical expression shown in Equation (4.6.17)
and graphically in Figure 4.14.  The excess enthalpy for salt, as a function of temperature and salt
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concentration is computed from the empirical expression shown in Equation (4.6.18) and
graphically in Figure 4.15.
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4.7  Thermal Conductivity

The thermal conductivity of multiple-phase geologic-media system depends on the
volumetric proportions of the fluid and solid phases, the configuration and structure of the solid
particles, the interfacial contact between the fluid and solid phases, and the thermal conductivities
of the phase components [Jury et al. 1991].  Generally, for geologic media, the thermal
conductivity of the solid phase is an order of magnitude greater than the liquid phases and
another order of magnitude greater than the gas phase.  NAPL-phase thermal conductivity is
generally lower than that of the aqueous phase.  Data collected from two-phase geologic-media
systems by Jury et al. [1991] have revealed important characteristics with respect to thermal
conductivity in porous media.  Thermal conductivity rises with increasing surface contact
between soil particles and increasing bulk density.  The presence of liquid water between soil
particles greatly improves the thermal contact between particles and displaces the relatively
poor, thermally conductive gas phase.  Thermal conductivity changes more rapidly with liquid
saturation at lower saturations, whereas the change in thermal conductivity near saturated
conditions is asymptotic.

4.7.1  Effective Thermal Conductivity

The STOMP simulator offers three thermal conductivity function options for two-phase
systems and a single function for three-phase systems.  Two-phase systems refer to geologic
media containing water and air components, whereas three-phase systems refer to geologic media
with either water, oil, and air components or water, ice, and air components.  In both two- and
three-phase systems, thermal conduction through the gas phase is neglected, because of the
relatively low thermal conductivity of gas compared with the solid and liquid phases.  For
geologic media, the thermal conductivity of the solid phase is frequently anisotropic; therefore
the effective thermal conductivity of a multiple-phase geologic-media system is computed as
anisotropic.  For two-phase systems, the effective thermal conductivity function options are
modified DeVries, linear, and Somerton [Somerton et al. 1973,1974].  The DeVries [1966]
empirical model for the thermal conductivity uses empirical weighing factors based on the soil
according to Equation (4.7.1).  The modified DeVries model computes the effective thermal
conductivity as the phase fraction weighted sum of the phase thermal conductivities according to
Equation (4.7.2), where the DeVries weighing factors equal one.  The linear model computes the
effective thermal conductivity as the aqueous-saturation scaled average between the unsaturated
and saturated effective thermal conductivities, according to Equation (4.7.3).  The Somerton mode
computes the effective thermal conductivity as the square root of the aqueous-saturation scaled
average between the unsaturated and saturated effective thermal conductivities, according to 
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Equation (4.7.4).  For three-phase systems, the effective thermal conductivity is computed from
a parallel model, according to Equation (4.7.5) for water, oil, and air systems and Equation (4.7.6)
for water, ice, and air systems.
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  ke  =  k s 1 − nT( ) + kl nT − nD 1 − sl( )[ ] + ki si (4.7.6)

4.7.2  Liquid Thermal Conductivity

The thermal conductivity of liquid water is computed as a function of temperature and
pressure from the steam table formulations [ASME 1967], according to Equation (4.7.6). 
Numerical values of the constants shown in Equation (4.7.6) are listed in Table A.9 of
Appendix A.  Liquid-oil thermal conductivity is computed as a function of temperature according
to the method of Sato and Riedel [Reid et al. 1987] as shown in Equation (4.7.7).  The thermal
conductivities function for saturated liquid water and saturated liquid carbon tetrachloride are
shown graphically in Figure 4.16.  Thermal conductivities of liquid mixtures are typically less
than those predicted by either mole or mass fraction averages, although the deviations are often
small.  NAPL-phase thermal conductivity for a mixture of liquid oils is computed according to
the method of Li [Reid et al. 1987], as shown in Equation (4.7.8).
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4.7.3  Ice Thermal Conductivity

Ice thermal conductivity is computed as a function of temperature from empirical
correlation of data from Dickerson et al. [1969], according to Equation (4.7.9).  The correlation is
valid over the temperature range from -100 C to 0 C.

ki  =  7.39519 − 2.86936 x 10−2 T + 3.54452 x 10−5 T2 (4.7.9)

4.7.4  Brine Thermal Conductivity

Thermal conductivity for aqueous solutions of sodium chloride are computed as a
function of temperature, pressure, and salt concentration using an empirical correlation
[Washburn et al. 1929], according to Equation (4.7.10).

  
kl

S  =  kl 1 − 0.248 l
S( ) (4.7.10)
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4.8  Diffusion Coefficients

Diffusion in geologic media refers to the net transport of material within a single phase in
the absence of advective mixing.  The diffusion described in this section refers to that which
results from concentration gradients within a single phase.  Diffusion coefficients represent the
proportionality between the flux of a diffusing component and its gradient within a single phase. 
With the low solubility assumption for the aqueous phase, diffusion of air and oils through the
aqueous phase is computed with binary liquid diffusion coefficients for dilute solutes.  The gas
phase contains variable proportions of air, water vapor, and oil vapors.  Diffusion through the
gas phase is computed from multicomponent diffusion coefficients which are component
concentration dependent.  Multicomponent diffusion coefficients for the gas phase are computed
by combining the gas-phase binary diffusion coefficient at infinite dilution through a method
proposed by Wilke [Reid et al. 1987].  Water and air are assumed insoluble in the NAPL phase;
therefore, dissolved water and air diffusion through the NAPL phase is neglected.  Diffusion of
oil components through NAPL-phase mixtures of liquid oils is computed from multicomponent
liquid mixture diffusion coefficients, which are dependent on the NAPL-phase composition. 
Multicomponent liquid mixture diffusion coefficients are computed from binary diffusion
coefficients at infinite dilution with a modification of the Wilke and Chang method [Reid et al.
1987].

4.8.1  Gas-Phase Diffusion Coefficient

Gas-phase diffusion coefficients are computed from dilute binary diffusion coefficients
and gas-phase mole fractions, according to the method by Wilke [Reid et al. 1987] and as shown
in Equations (4.8.1) and (4.8.2), for water vapor and oil-component vapor, respectively.  Air
diffusion through the gas phase is computed from the mass conservation requirement that the net
diffusive flux sum to zero, as shown in Equation (4.8.3).  Gas-phase binary diffusion coefficients
are computed as a function of temperature and pressure from reference values [Vargaftik 1975] or
using the empirical method of Wilke and Lee [Reid et al. 1987].  The reference method of
Vargaftik is shown in Equation (4.8.4), where association factors for air-water and air-oil of 1.8
and 1.6, respectively, are recommended.  In the absence of reference diffusion coefficients, gas-
phase binary diffusion coefficients are estimated using the method of Wilke and Lee [Reid et al.
1987], as shown in Equation (4.8.5).  The gas-phase binary diffusion coefficient as a function of
temperature for water and carbon tetrachloride vapor, is shown graphically in Figure 4.17 for 1
atm pressure.
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4.8.2  Aqueous-Phase Diffusion Coefficient

With the low solubility assumption for air and oil dissolution in the aqueous phase,
diffusion coefficients for diffusive transport through the aqueous phase are computed from
binary liquid diffusion coefficients at infinite dilution.  This assumption implies that each
molecule of dissolved air or oil diffuses through an aqueous environment of essentially pure
water.  Typically engineering practices apply diffusion coefficients at infinite dilution for solute
concentrations up to 10 % molar concentration.  Aqueous-phase diffusion coefficients are
computed from the method of Wilke and Chang [Reid et al. 1987], according to Equation (4.8.6). 
Water diffusion through the aqueous phase is computed from the mass conservation requirement
that the net diffusive flux sum is zero, as shown in Equation (4.8.7).
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4.8.3  NAPL-Phase Diffusion Coefficient

In the STOMP simulator, air and water are considered insoluble in NAPL phase. 
Component diffusion occurs in the NAPL phase for mixtures of liquid oils.  In a binary NAPL
phase, mixture a single diffusion coefficient is sufficient to express the proportionality between
diffusive component flux and the molar concentration gradient.  In a compositional NAPL phase,
the flux of a single oil component is dependent on the molar concentration gradients of 1 minus
the number of oil components in the liquid mixture.  For example, the flux of a component in a
ternary system depends on the molar concentration gradients of two components.  In
multicomponent liquid systems, main coefficients relate the diffusion rate of a component to its
gradient, whereas cross coefficients relate the diffusion rate of a component to the gradient in
another component.  When dealing with multicomponent systems with more than two
components, there are no convenient and simple estimation methods for estimating these main
and cross coefficients [Reid et al. 1987].  For binary NAPL phases, diffusion coefficients are
computed from the method of Vignes [Reid et al. 1987], according to Equation (4.8.8).  The
thermodynamic correction factor, shown in Equation (4.8.8), corrects the expression for diffusive
flux.  The diffusion coefficient indicates that the flux of a diffusing component is proportional to
the concentration gradient.  Diffusion, however, should be expressed by the gradient in chemical
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potential.  The thermodynamic correction factor makes this adjustment.  For gases, this
correction factor is typically close to unity and neglected; however, for liquid mixtures it is
generally applied.
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4.9  Porosity and Tortuosity

The STOMP simulator makes uses of three porosity types: effective, diffusive, and total.
Effective porosity refers to interconnected pore spaces associated with gross fluid flow. 
Diffusive porosity refers to all interconnected pore spaces.  Total porosity refers to both isolated
and connected pore spaces.  Isolated pore spaces are assumed to be filled with liquid water.  All
saturations are defined with respect to the diffusive porosity.  The liquid contained within the
pore space, represented by the difference between the diffusive and effective porosities, equals
the residual moisture content.  This residual moisture content is a function of capillary pressure
and consequentially not strictly an immobile fluid.  Changes in porosity occur through changes in
system pressure [Leijnse 1992], according to Equations (4.9.1) and (4.9.2), where the porous
media compressibility is computed from the coefficient of specific storage.

nD  =  1 − 1 − n D( ) exp − P P − P ( )( ) (4.9.1)
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nT  =  1 − 1 − n T( ) exp − P P − P ( )( ) (4.9.2)

where,

  
P  =  

Ss

l g
− n D P

Diffusive flux in porous media is computed from a modified expression for Fickian
diffusion using phase tortuosities [Jury et al. 1991].  In the STOMP simulator, tortuosities are
computed from the methods of Millington and Quirk [1959], which were based on theoretical
pore-size distribution models for partially saturated and fully saturated two-phase systems. 
These expressions, extended for three-phase systems are shown in Equation (4.9.3).

   =  nD( )1/3
s( )7/3

,  for  = l,g,n (4.9.3)

4.10  Saturation

Saturations are computed from scaled pressure differences between phases.  These
functions are collectively referred to as the soil moisture retention functions or soil moisture
characteristics.  Numerous empirical functions have been published that relate saturation with
various capillary pressures.  The soil moisture retention functions, available with the STOMP
simulator, depend on the operational mode and, in particular, the system of phases.  Saturation
functions can be classified as hysteretic or nonhysteretic.  In hysteretic functions, effects of
saturation history, saturation direction (e.g., wetting or draining), and/or nonwetting fluid
entrapment are considered.  In nonhysteretic functions, these phenomena are neglected.  In
general, the hysteretic functions are numerically complex, requiring additional execution time and
memory compared with their nonhysteretic counterparts.  The following sections describe
available nonhysteretic and simplified (fluid-entrapment only) hysteretic saturation functions
according to the system of phases.  In all phase systems, the summation of phase saturations
equal one.  Aqueous-NAPL-gas systems are assumed to have a decreasing wettability order from
aqueous to NAPL to gas.  In aqueous-ice-gas systems, ice is assumed to be completely entrapped
by the aqueous phase with no gas-ice interfaces.
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4.10.1  Aqueous-Gas Systems

The following sections describe nonhysteretic and hysteretic soil moisture retention
functions for aqueous-gas systems.  Beyond the listed functions, the STOMP simulator also
allows the description of the saturation function for aqueous-gas systems through tabular data. 
Unless specifically stated, the described functions refer to nonhysteretic systems.  For aqueous-
gas systems, actual aqueous saturations are computed in terms of effective aqueous saturations,
according to Equation (4.10.1), where the effective minimum aqueous saturation is computed as a
function of aqueous-gas capillary pressure, as shown in Equation (4.10.2), according to Fayer and
Simmons [1995].

  sl  =  s l  1 −  s m( )  +  s m (4.10.1)
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4.10.1.1  Van Genuchten Function

The van Genuchten function [van Genuchten 1980] relates the gas-aqueous capillary
pressure to the effective aqueous saturation through two correlation parameters, according to
Equation (4.10.3).  The n  and m  correlation parameters for the van Genuchten function can be
related depending on the chosen function for relative permeability.  Typically, these parameters
are related, as shown in Equation (4.10.3).  An example of the van Genuchten function is shown
graphically in Figure 4.18.
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4.10.1.2  Brooks and Corey Function

The Brooks and Corey function [Brooks and Corey 1966] for aqueous-gas systems
relates the gas-aqueous capillary pressure to the effective aqueous saturation with two correlation
parameters, according to Equation (4.10.4).  The first parameter, , is referred to as the entry
head and equals the minimum drainage capillary head for which a continuous nonwetting phase
(e.g., gas phase) exits.  The second parameter, , is related to the pore-size distribution within
the porous media.  An example of the Brooks and Corey function for aqueous-gas systems is
shown graphically in Figure 4.19.
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4.10.1.3  Dual Porosity Functions

Dual porosity functions or equivalent continuum models for aqueous-gas systems relate
the gas-aqueous capillary pressure to the bulk aqueous saturation for fractured geologic media
through two functions [Klavetter and Peters 1986; Nitao 1988].  One function relates the gas-
aqueous capillary pressure to the matrix aqueous saturation and the other relates the gas-aqueous
capillary pressure to the fracture aqueous saturation.  The pivotal assumption associated with
the dual porosity function is that the fracture and matrix pressures are in equilibrium.  This
assumption neglects transient fracture-matrix interactions.  Fracture and matrix effective
saturations can be computed with either van Genuchten or Brooks and Corey functions (Sections
4.10.1.1 and 4.10.1.2).  The bulk aqueous saturation is computed by combining the fracture and
matrix aqueous saturations and diffusive porosities, as shown in Equation (4.10.5), where the
actual saturations are computed from effective saturations, according to Equations (4.10.6) and
(4.10.7).  An example of a dual porosity function, using the van Genuchten and Brooks and
Corey saturation functions for aqueous-gas systems, is shown graphically in Figures 4.20 and
4.21, respectively.
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sl f
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(4.10.6)

  
slm

 =  s lm
1 − smm( ) + smm

(4.10.7)

4.10.1.4  Capillary Pressure-Saturation Functions for Systems with Gas Entrapment

A theoretical model for hysteretic saturation functions for aqueous-gas systems was
developed by Parker and Lenhard [1987].  A simplified version of this model, analogous to
Kaluarachchi and Parker [1992], has been implemented in the STOMP simulator. The model
includes effects of gas entrapment during aqueous-phase imbibition paths.  Gas entrapment
during aqueous-phase imbibition will depend on the aqueous saturation and current saturation
path.  The amount of entrapped gas varies linearly between zero and the gas effective residual
saturation with the apparent saturation, which varies between the reversal point from main
drainage to one.  Gas effective residual saturations are computed using an empirical relationship
developed by Land [1968] for aqueous-NAPL systems. In this simplified hysteretic model for
aqueous-gas systems, gas can be trapped or free, where free gas refers to continuous volumes
which advect freely and trapped gas refers to discontinuous ganglia of gas occluded within the
aqueous phase.  Occluded gas is assumed to be immobile.  The apparent aqueous saturation
equals the effective aqueous saturation plus effective trapped gas saturation, as shown in
Equation (4.10.8).  The effective gas saturation equals the effective trapped and free gas
saturations, as shown in Equation (4.10.9).  In hysteretic systems, the residual saturation is
independent of capillary pressure.

  
s l  =  s l  +  s gtl (4.10.8)

where,
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sg

1 − sm
(4.10.9)

The saturation functions relate gas-aqueous capillary pressure to apparent aqueous
saturations, according to Equations (4.10.10) and (4.10.11), for the van Genuchten and Brooks
and Corey functions, respectively. The effective trapped gas saturation is computed according to
Equation (4.10.12), which recognizes that entrapped gas cannot exceed the gas present. Land’s
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parameter for gas-aqueous interfaces is computed according to Equation (4.10.13).
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where,
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1

i s g r

 −  1 (4.10.13)

4.10.2  Aqueous-Ice-Gas Systems

The following sections describe nonhysteretic soil-moisture retention functions for
aqueous-ice-gas systems.  For these systems, ice is assumed to be occluded by the aqueous
phase, with no gas-ice interfaces.  The apparent aqueous saturation represents the ratio of free
aqueous saturation to the normalized free pore volume, according to Equation (4.10.14).  The
unfrozen aqueous fraction is defined as the ratio of liquid aqueous saturation to total aqueous
saturation, according to Equation (4.10.15).  The effective irreducible aqueous saturation is
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defined as a function of the actual irreducible aqueous saturation and the unfrozen aqueous
fraction, according to Equation (4.10.16).  The effective aqueous and gas saturations, used in the
relative permeability functions, are defined according to Equations (4.10.17) and (4.10.18),
respectively.
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(4.10.14)
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Under freezing conditions, an assumption is made that thermodynamic equilibrium exists
between the ice and aqueous phases in porous media.  An expression of thermodynamic
equilibrium between the ice and aqueous phases in porous media, which accounts for the
difference between the ice pressure and the total potential of the aqueous phase, has been
developed by Loch [1977], according to Equation (4.10.19).  The total potential of the aqueous
phase is the pressure one would measure in a soil aqueous solution with a tensiometer, if the
tensiometer cup were a perfect semipermeable membrane.  The total pressure is defined as the
difference between the aqueous phase pressure and the osmotic pressure, as shown in
Equation (4.10.20).  The osmotic pressure for dilute solutes is computed according to
Equation (4.10.21).  Combining Equations (4.10.19) through (4.10.21) yields an expression for
the ice pressure as a function of temperature, aqueous pressure, and solute concentration, as
shown in Equation (4.10.22).
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The soil moisture retention function that relates gas-aqueous capillary pressures to
aqueous saturations, can be used to predict the retention function of any two-phase interface by
interfacial-tension dependent scaling of the capillary pressures.  Under freezing conditions, the
apparent aqueous saturation is computed from the gas-aqueous capillary pressure and the
fraction of unfrozen water is computed from the scaled ice-aqueous capillary pressure [Panday
and Corapcioglu 1994], where the scaling factor is computed from the ratios of interfacial
tensions [Lenhard 1994], according to Equation (4.10.23).
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4.10.2.1  Van Genuchten Functions

For freezing conditions, the van Genuchten function relates the gas-aqueous capillary
pressure to the apparent aqueous saturation and the scaled ice-aqueous capillary pressure to the
unfrozen aqueous-phase fraction, according to Equations (4.10.24) and (4.10.25), respectively. 
The correlation parameters for the van Genuchten function can be determined from gas-aqueous
retention data.  Ice saturation, as a function of temperature using the van Genuchten soil moisture
retention function, is shown graphically in Figure 4.22, for a constant total aqueous saturation of
0.9 and unfrozen solute concentrations of 0.0, 1.0, and 2.0 mol/L.  The graphs in Figure 4.22 were
generated by fixing the total aqueous saturation and the unfrozen or base solute concentration. 
Solute concentrations in the aqueous phase increased with increasing ice saturation, because of
the a lack of solute absorption within the ice phase.  Solute concentrations in the aqueous phase
as a function of temperature for unfrozen solute concentrations of 1.0, and 2.0 mol/L, are shown
graphically in Figure 4.23.
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  suf  =  1,  for  Pi − Pl[ ] ≤  0

4.10.2.2  Brooks and Corey Functions

For freezing conditions, the Brooks and Corey function relates the gas-aqueous capillary
pressure to the apparent aqueous saturation and the scaled ice-aqueous capillary pressure to the
unfrozen aqueous fraction, according to Equations (4.10.26) and (4.10.27), respectively.  The
correlation parameters for the Brooks and Corey function can be determined from gas-aqueous
retention data.  Ice saturation, as a function of temperature using the Brooks and Corey soil
moisture retention function, is shown graphically in Figure 4.24, for an apparent aqueous
saturation of 0.9 and unfrozen solute concentrations of 0.0, 1.0, and 2.0 mol/L.  The graphs in
Figure 4.24 were generated by fixing the apparent aqueous saturation and the unfrozen or base
solute concentration.  Solute concentrations in the aqueous phase increased with increasing ice
saturation, because of a lack of solute absorption within the ice phase.  Solute concentrations in
the aqueous phase, as a function of temperature for unfrozen solute concentrations of 1.0 and 2.0
mol/L, are shown graphically in Figure 4.25.
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  suf  =  1,  for  il Pi − Pl( )  <  

4.10.3  Aqueous-NAPL-Gas Systems

The following sections describe nonhysteretic and hysteretic nonwetting-fluid entrapment
soil-moisture retention functions for aqueous-NAPL-gas systems.  The functions described
herein follow the simplified theory by Kaluarachchi and Parker [1992] of the theoretical models
of Parker and Lenhard [1987].  Saturations are defined as functions of water-equivalent scaled
capillary heads, that are computed from differences in pressure across phase-pair interfaces.  For
aqueous-NAPL-gas systems, three interfacial capillary heads are defined (i.e., gas-aqueous, gas-
NAPL, and NAPL-aqueous), according to Equations (4.10.28) through (4.10.30), where the
wettability order decreases from aqueous to NAPL to gas.  Phase scaling factors are computed
from the ratio of interfacial tensions according to the theory of Lenhard [1994], as shown in
Equation (4.10.31), where the gas-aqueous is chosen as the reference fluid.
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The Parker and Lenhard [1987] theory distinguishes between actual, effective, and
apparent saturations.  Actual saturations are defined as the ratio of fluid volume to diffusive pore
volume.  Effective saturations represent normalized actual saturations based on the pore volumes
above the irreducible or minimum saturation of the wetting fluid (i.e., aqueous phase liquid). 
Effective saturations for the aqueous-phase, NAPL, gas-phase, and total liquid, are defined
according to Equations (4.10.32) through (4.10.35), respectively.  Apparent saturations are
defined in terms of effective saturations.  Apparent saturations represent the effective saturation
of the fluid plus the effective saturations of fluids of lesser wettability trapped within the fluid
for the aqueous-phase, NAPL, and total liquid, according to Equations (4.10.36) through
(4.10.38). Trapped fluids refer to discontinuous islands or ganglia of fluid occluded within
another fluid of greater wettability.  The theory of Lenhard and Parker [1987] assumes that
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trapped fluids are immobile.  Effective saturations can be defined in terms of trapped and free
fluids, as shown in Equations (4.10.39) and (4.10.40), for the NAPL and gas phases, where free
fluids refer to continuous phases that move convectively.

  
s l  =  

sl − sm

1 − sm
(4.10.32)

s n  =  
sn

1 − sm
(4.10.33)

s g  =  
sg

1 − sm
(4.10.34)

  
s t  =  

sl + sn − sm

1 − sm
(4.10.35)

  s l  =  s l + s nt
+ s gtl (4.10.36)

s n  =  s n + s gtn
(4.10.37)

  s t  =  s l + s n + s gtl + s gtn
(4.10.38)

s n  =  s n f
+ s nt

(4.10.39)

  
s g  =  s g f

+ s gtl + s gtn
(4.10.40)

In the absence of hysteretic and fluid entrapment effects, fluid saturations are considered
as unique functions of fluid-gas capillary heads.  The Parker and Lenhard [1987] theory
accommodates the effects of fluid entrapment by relating fluid-gas capillary heads to apparent
saturations rather than effective saturations. The fundamental assumption related to the theory of
Parker and Lenhard [1987] is that the functions relating fluid saturation to fluid-gas interfacial
pressure differences can be expressed with a single soil-moisture retention function, for a given
porous medium, by scaling the fluid-gas capillary heads.  For aqueous-NAPL-gas systems, two
functions relating fluid saturation with fluid-gas capillary head are required.  The total-liquid
saturation is related to the gas-NAPL capillary head, and the aqueous saturation is related to the
oil-aqueous capillary head, as shown in Equations (4.10.41) and (4.10.42), respectively.

s t  =  s∗
gn hgn( ) (4.10.41)
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  s l  =  s∗
nl hnl( ) (4.10.42)

4.10.3.1  Van Genuchten Function

The van Genuchten function [van Genuchten 1980] relates fluid saturation to capillary
head through two soil dependent correlation parameters.  The n  and m  correlation parameters
for the van Genuchten function can be related depending on the chosen function for relative
permeability.  Expressions for the effective total-liquid saturation as a function of scaled gas-
NAPL capillary head and the effective aqueous saturation as a function of scaled oil-aqueous
capillary head are shown in Equations (4.10.43) and (4.10.44), using the van Genuchten soil-
moisture retention function. The van Genuchten function is shown graphically in Figure 4.17.

s t  =  1 + gn hgn( )n 
 

 
 

−m

,  for  hgn  >  0 (4.10.43)

where,

s t  =  1,  for  hgn  ≤  0

  
s l  =  1 + nl hnl( )n[ ]− m

,  for  hnl  >  0 (4.10.44)

where,

  s l  =  1,  for  hnl  ≤  0

4.10.3.2  Brooks and Corey Function

The Brooks and Corey function [Brooks and Corey 1966] relates fluid saturation to
capillary head through two soil dependent correlation parameters.  The first parameter, , is
referred to as the entry head and equals the minimum drainage capillary head for which a
continuous nonwetting phase (e.g., gas phase) exits.  The second parameter, , is related to the
pore-size distribution within the porous media.  Expressions for the effective total-liquid
saturation as a function of scaled gas-NAPL capillary head and the effective aqueous saturation
as a function of scaled oil-aqueous capillary head are shown in Equations (4.10.45) and (4.10.46),
using the Brooks and Corey soil-moisture retention function. The Brooks and Corey function is
shown graphically in Figure 4.18.
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s t  =  
gn hgn 

  
 
  

−

,  for  gn hgn  >  (4.10.45)

where,

s t  =  1,  for  gn hgn  ≤  

  
s l  =  nl hnl 

  
 
  

−

,  for  nl hnl  >  (4.10.46)

where,

  s l  =  1,  for  nl hnl  ≤  

4.10.3.3 Capillary Pressure Saturation Functions for Systems with Fluid Entrapment

Fluid entrapment effects in the functions for fluid saturation are accommodated in the
theory of Parker and Lenhard [1987] from the assumption that fluid entrapment phenomena for
aqueous-NAPL-gas systems can be predicted from fluid-gas systems (e.g., gas-aqueous, gas-
NAPL, NAPL-aqueous).  Fluids of lesser wettability are assumed to be trapped by fluids of
greater wettability; therefore, gas can be entrapped by NAPL or aqueous phase and NAPL can be
entrapped by the aqueous phase.  For no free-NAPL conditions, the effective trapped NAPL
saturation equals the effective NAPL saturation, according to Equation (4.10.47).  For free-
NAPL conditions, a simplified entrapment theory is used [Kaluarachchi and Parker 1992] in
which the effective trapped NAPL saturation is a function of the apparent aqueous saturation,
according to Equation (4.10.48). This relation recognizes that entrapped NAPL cannot exceed the
NAPL present.

s nt
 =  s n (4.10.47)

  

s nt  = min 
1− s l

min

1+ Ln 1 − sl
min( ) −

1 − sl

1 + Ln 1 − sl
 
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 
 
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 
 

  

 

 
 

  
, sn

 

 

 
 

 

 

 
 
,  for  s l > sl

min (4.10.48)

where,
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Ln  =  
1

i s nr

− 1

Gas entrapment is complicated by the fact that both NAPL and aqueous fluids have
greater wettabilities than gas and can contain entrapped gas.  In the absence of free NAPL, gas
entrapment is occurs by advancing gas-aqueous interface, according to the theory for aqueous-gas
systems.  In the presence of free NAPL, gas entrapment occurs in response to advancing gas-
NAPL interfaces, corresponding to increasing apparent total liquid saturation.  Release of
entrapped gas follows either gas-aqueous or gas-NAPL interfaces, depending on the occurrence of
free NAPL.  Gas, initially trapped by one wetting fluid, transfers to the other according to the
position of the oil-aqueous interface, tracked by the apparent aqueous saturation.  For no free-
NAPL conditions, the effective residual saturations for gas trapped by the aqueous phase are
computed according to Equation (4.10.15).  For free-NAPL conditions, the effective residual
saturations for gas trapped by NAPL are computed according to Equation (4.10.49).

s g r
 =  

1 − st
min( )

1 + Lg 1 − st
min( ) (4.10.49)

where,

Lg  =  
1

i s g r

−1

The distribution of entrapped gas within a aqueous-NAPL-gas system depends on the
positions of the gas-NAPL and oil-aqueous interfaces, as tracked by the apparent aqueous and
total liquid saturations.  The distribution additionally depends on the minimum pore size into
which gas-NAPL interfaces have receded since the inception of free-NAPL conditions, as tracked
by the minimum value of the apparent total-liquid saturation and on the apparent aqueous
saturation at the inception of free-NAPL conditions.  To compute entrapped gas saturations,
three conditions are distingushed

In the first case, there is no trapped or free NAPL present. Gas is only entrapped by the
aqueous phase and the entrapped gas saturation is computed according to Equation (4.10.50).
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(4.10.50)

where,

Lg  =  
1

i s g r

−1

In the second case, no free NAPL is present and gas is, again, only entrapped by the
aqueous phase according to Equation (4.10.51).

s gtl
 = min 

1 − st
min
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min( ) −

1− s l
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(4.10.51)

where,

Lg  =  
1

i s g r

−1

The third case describes entrapment of the gas phase by both the aqueous and NAPL
phases according to Equation (4.10.52) and (4.10.53) respectively.

s gtl
 =

1 − st
min

1+ Lg 1 − st
min( ) −

1 − sl

1 + Lg 1− sl
 
 

 
 

 

 
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 
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(4.10.52)

s gtn
 =

1− sl

1+ Lg 1− sl
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−
1− st
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 
 
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(4.10.53)

where,

Lg  =  
1

i s g r

−1
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4.11  Relative Permeability

Relative permeability for fluid phases are computed for both nonhysteretic and hysteretic
nonwetting-fluid entrapment systems. Three distinct fluid systems are recognized: water-air,
water-ice-air, and water-oil-air.  Relative permeabilities for water-air systems are computed for
the aqueous- and gas-phase fluids.  The functions for fluid phase relative permeability follow the
simplified Kaluarachchi and Parker [1992] model which is based on the theory of Lenhard and
Parker [1987]. Fluid entrapment effects are computed following the method of Land [1968]. 
Relative permeabilities for water-ice-air systems are computed for the aqueous- and gas-phase
fluids.  Only nonhysteretic systems are addressed where fluid phase relative permeabilities are
unique functions of phase saturations.  The relative permeability functions for water-ice-air
systems follow the theory of White [1995].  Relative permeabilities for water-oil-air systems are
computed for the aqueous-phase, NAPL, and gas-phase.  The theory for relative permeability
[Lenhard and Parker 1987] predicts mild hysteretic effects for the aqueous fluid, except at high
saturations, pronounced hysteretic effects for the gas phase, negligible hysteretic effects for
NAPL for low aqueous saturations, and marked hysteretic effects for NAPL with increasing
aqueous saturations.

4.11.1  Aqueous-Gas Systems

For nonhysteretic systems several empirical functions are available in the STOMP
simulator for computing fluid phase relative permeabilities from effective fluid saturations.  For
systems with gas entrapment, expressions according to a simplified theory [Kaluarachchi and
Parker 1992] are used.

4.11.1.1  Burdine Relative Permeability Functions

Aqueous- and gas-phase relative permeability can be computed as a function of aqueous
saturation from knowledge of the soil-moisture retention function and the pore distribution model
of Burdine [1953].  If the van Genuchten and Brooks and Corey soil-moisture retention functions
are used, closed-form expressions for fluid phase relative permeability can be derived.  Using the
van Genuchten soil-moisture retention function, the aqueous- and gas-phase relative
permeabilities appear as shown in Equations (4.11.1) and (4.11.2), respectively.  Using the
Brooks and Corey soil-moisture retention function, the aqueous- and gas-phase relative
permeabilities appear as shown in Equations (4.11.3) and (4.11.4), respectively.  Examples of the
Burdine relative permeability functions for water-air systems are shown graphically in Figures
4.26 and 4.27 with the van Genuchten and Brooks and Corey soil-moisture retention functions,
respectively.
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krl  =  s l( )2

1 − 1 − s l( )1/m( )m 
  

 
  (4.11.1)

  
krg  =  s g( )2

1 − s l( )1/m( )m
(4.11.2)

  krl  =  s l( ) 3 + 2/( ) (4.11.3)

  
krg  =  s g( )2

1 − s l( ) 1 + 2/( ) 
 

 
 (4.11.4)

4.11.1.2  Mualem Relative Permeability Functions

Aqueous- and gas-phase relative permeability can be computed as a function of aqueous
saturation from knowledge of the soil-moisture retention function and the pore distribution model
of Mualem [1976].  If the van Genuchten and Brooks and Corey soil-moisture retention
functions are used, closed-form expressions for fluid phase relative permeability can be derived. 
Using the van Genuchten soil-moisture retention function, the aqueous- and gas-phase relative
permeabilities appear as shown in Equations (4.11.5) and (4.11.6), respectively.  Using the
Brooks and Corey soil-moisture retention function, the aqueous- and gas-phase relative
permeabilities appear as shown in Equations (4.11.7) and (4.11.8), respectively.  Examples of the
Mualem relative permeability functions for water-air systems are shown graphically in Figures
4.26 and 4.27 with the van Genuchten and Brooks and Corey soil-moisture retention functions,
respectively.

  
krl  =  s l( )1/2

1 − 1 − s l( )1/m( )m 
  

 
  

2

(4.11.5)

  
krg  =  s g( )1/2

1 − s l( )1/m( )m 
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 
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(4.11.6)

  krl  =  s l( ) 5/2 + 2/( ) (4.11.7)

  
krg  =  s g( )1/ 2

1 − s l( ) 1 + 1/( ) 
 

 
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2

(4.11.8)
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4.11.1.3  Corey Relative Permeability Functions

Aqueous- and gas-phase relative permeability can be computed from modified
expressions for effective aqueous saturation according to the empirical model of Corey [1977]. 
The model of Corey accounts for trapped air through a modification to the definition of the
effective aqueous saturation according to Equation (4.11.9).  The Corey functions for aqueous-
and gas-phase relative permeability are computed according to Equations (4.11.10) and (4.11.11),
respectively.  Examples of these functions are shown graphically in Figure 4.28.

 sl =
sl – sm

1 – sm – sgtl

(4.11.9)

  krl  =  s l( )4 (4.11.10)

  
krg  =  1 − s l( )2

1 − s l( )2( ) (4.11.11)

4.11.1.4  Fatt and Klikoff Relative Permeability Function

Aqueous- and gas-phase relative permeability are computed according to the Fatt and
Klikoff [1959] models from the conventionally defined effective aqueous saturation according to
Equations (4.11.12) and (4.11.13), respectively.  Examples of these functions are shown
graphically in Figure 4.28.

  krl  =  s l( )3 (4.11.12)

  krg  =  1 − s l( )3 (4.11.13)

4.11.1.5  Dual Porosity Relative Permeability Functions

Dual porosity functions or equivalent continuum models [Klavetter and Peters 1986;
Nitao 1988] relate bulk fluid phase relative permeabilities to the those for the fracture and matrix
according to Equations (4.11.14) and (4.11.15).  Dual porosity models require the assumption
that fracture and matrix fluid pressures are in equilibrium, which inherently neglects transient
fracture-matrix interactions.  Fracture and matrix relative permeabilities are computed from either
the Burdine or Mualem models using either the van Genuchten or Brooks and Corey soil-
moisture retention functions.  In these functions the effective aqueous and gas saturations are
replaced with the corresponding values for the fracture and matrix components of the soil.  For
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example the fracture and matrix aqueous relative permeabilities for the Burdine model with the
Brooks and Corey soil-moisture retention function are shown in Equations (4.11.16) and
(4.11.17), respectively.  Examples of the dual porosity function for aqueous- and gas-phase
relative permeability using the Burdine relative permeability function are shown graphically in
Figures 4.29 and 4.30, respectively for the van Genuchten and Brooks and Corey soil moisture
retention functions.  Bulk, matrix, and fraction saturation values for the curves shown in Figures
4.29 and 4.30 were obtained from the dual porosity functions shown in Figures 4.20 and 4.21.

  
krlb

 =  
k f krl f

nD f
+ km krlm

nDm

k f nD f
+ km nDm

(4.11.14)

krgb
 =  

k f krg f
nD f

+ km krgm
nDm

k f nD f
+ km nDm

(4.11.15)

  
krl f

 =  s l f( ) 3 + 2/( )
(4.11.16)

  
krlm

 =  s lm( ) 3 + 2/( )
(4.11.17)

4.11.1.6  Relative Permeability Functions for Systems with Gas Entrapment

Gas entrapment affects the aqueous permeability by displacing water into larger pores.
Parker and Lenhard [1987] have shown that this effect is small. In the STOMP model, we
assume that the aqueous phase permeability is a single-valued function of aqueous phase
saturation. Hysteresis in gas relative permeability for aqueous-gas systems also occurs as a result
of gas entrapment, where the net effect is to reduce the pore space available for gas flow. 
Therefore, the only changes required in the gas relative permeability functions are to replace the
effective aqueous saturations with the apparent aqueous saturations in the pore size integrals and
to replace total gas saturation with free gas saturation in the tortuosity terms.

Aqueous- and gas-phase relative permeability can be computed as a function of aqueous
saturation from knowledge of the soil-moisture retention function and the pore distribution model
of Burdine [1953].  If the van Genuchten and Brooks and Corey soil-moisture retention functions
are used, closed-form expressions for fluid phase relative permeability can be derived.  Using the
van Genuchten soil-moisture retention function, the aqueous- and gas-phase relative
permeabilities appear as shown in Equations (4.11.18) and (4.11.19), respectively.  Using the
Brooks and Corey soil-moisture retention function, the aqueous- and gas-phase relative
permeabilities appear as shown in Equations (4.11.20) and (4.11.21), respectively. 
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krl  =  s l( )2
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(4.11.19)

  krl  =  s l( ) 3 + 2/( ) (4.11.20)

  
krg  =  s g f( )2

1 − sl( ) 1 + 2/( ) 
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 
 

(4.11.21)

Aqueous- and gas-phase relative permeability can be computed as a function of aqueous
saturation from knowledge of the soil-moisture retention function and the pore distribution model
of Mualem [1976].  If the van Genuchten and Brooks and Corey soil-moisture retention
functions are used, closed-form expressions for fluid phase relative permeability can be derived. 
Using the van Genuchten soil-moisture retention function, the aqueous- and gas-phase relative
permeabilities appear as shown in Equations (4.11.22) and (4.11.23), respectively.  Using the
Brooks and Corey soil-moisture retention function, the aqueous- and gas-phase relative
permeabilities appear as shown in Equations (4.11.24) and (4.11.25), respectively.

 
  
krl  =  s l( )1/2
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(4.11.22)

  
krg  =  s g f( )1/2

1 − sl( )1/ m 
 

 
 

m 

  
 

  

2

(4.11.23)

  krl  =  s l( ) 5/2 + 2/( ) (4.11.24)

  
krg  =  s g f( )1/2
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2

(4.11.25)

4.11.2  Aqueous-Ice-Gas Systems

Relative permeability for aqueous-air-gas systems are computed for nonhysteretic
systems following the theory of White [1995].  This model assumes that liquid water completely
occludes ice and that no direct ice-gas interfaces occur.  Occluded ice is further assumed to behave

4.47



similar to occluded air in hysteretic aqueous-gas systems by obstructing the flow of liquid water
and displacing water into larger pore spaces.  Relative permeability functions for the aqueous and
gas phases are derived from modified versions of the Burdine [1953] and Mualem [1976]
functions.  Both functions are modified to include the effects of occluded ice.

4.11.2.1  Burdine Relative Permeability Functions

Aqueous- and gas-phase relative permeabilities are computed as a function of effective
aqueous saturations from knowledge of the soil-moisture retention function and the pore
distribution model of Burdine [1953].  If the van Genuchten and Brooks and Corey soil-moisture
retention functions are used, closed-form expressions for fluid relative permeability can be
derived.  For the van Genuchten soil-moisture retention function, the aqueous and gas relative
permeabilities appear as shown in Equations (4.11.26) and (4.11.27), respectively.  For the
Brooks and Corey soil-moisture retention function, the aqueous and gas relative permeabilities
appear as shown in Equations (4.11.28) and (4.11.29), respectively.  Examples of the Burdine
relative permeability functions for water-ice-air systems are shown graphically in Figure 4.31 for
the van Genuchten and Brooks and Corey soil-moisture retention functions.  This figure shows
aqueous relative permeability as a function of ice saturation for a totally saturated system (i.e., 

  s l + s i = 1).

  
krl  =  s l( )2

1 − 1 − s l( )1/m( )m 
  

 
  (4.11.26)

  
krg  = s g( )2

1 − s l( )1/m( )m
(4.11.27)

  krl  =  s l( ) 3 + 2/( ) (4.11.28)

  
krg  =  s g( )2

1 − s l( ) 1 + 2/( ) 
 

 
 (4.11.29)

4.11.2.1  Mualem Relative Permeability Functions

Aqueous- and gas-phase relative permeabilities are computed as a function of effective
aqueous saturations from knowledge of the soil-moisture retention function and the pore
distribution model of Mualem [1976].  If the van Genuchten and Brooks and Corey soil-moisture
retention functions are used, closed-form expressions for fluid relative permeability can be
derived.  For the van Genuchten soil-moisture retention function the aqueous and gas relative
permeabilities appear as shown in Equations (4.11.30) and (4.11.31), respectively.  For the
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Brooks and Corey soil-moisture retention function, the aqueous and gas relative permeabilities
appear as shown in Equations (4.11.32) and (4.11.33), respectively.  Examples of the Mualem
relative permeability functions for water-ice-air systems are shown graphically in Figures 4.31,
for the van Genuchten and Brooks and Corey soil-moisture retention functions.  This figure
shows aqueous relative permeability as a function of ice saturation for a totally saturated system
(i.e.,   s l + s i = 1).
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  krl  =  s l( ) 5/2 + 2/( ) (4.11.32)
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4.11.3  Aqueous-NAPL-Gas Systems

For nonhysteretic systems several empirical functions are available in the STOMP
simulator for computing fluid phase relative permeabilities from effective fluid saturations.  For
systems with nonwetting fluid entrapment, expressions according to a simplified theory
[Kaluarachchi and Parker 1992] are used.

4.11.3.1  Burdine Relative Permeability Functions

Aqueous, NAPL, and gas relative permeability can be computed as a function of fluid
phase saturations from modified forms of the Burdine [1953] relative permeability model,
integrated with certain forms of the soil-moisture retention function.  If the van Genuchten and
Brooks and Corey soil-moisture retention functions are used, closed-form expressions for fluid
phase relative-permeability can be derived.  Using the van Genuchten soil-moisture retention
function, the aqueous, NAPL, and gas relative permeabilities appear as shown in Equations
(4.11.34) through (4.11.36), respectively.  Using the Brooks-Corey soil-moisture retention
function, the aqueous, NAPL, and gas relative permeabilities appear as shown in Equations
(4.11.37) through (4.11.39), respectively.
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  krl  =  s l( ) 3 + 2/( ) (4.11.37)
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4.11.3.2  Mualem Relative Permeability Functions

Aqueous, NAPL, and gas relative permeability can be computed as a function of fluid
phase saturations from modified forms of the Mualem [1976] relative permeability model,
integrated with certain forms of the soil-moisture retention function.  If the van Genuchten and
Brooks and Corey soil-moisture retention functions are used, closed-form expressions for fluid
phase relative-permeability can be derived.  Using the van Genuchten soil-moisture retention
function, the aqueous, NAPL, and gas relative permeabilities appear as shown in Equations
(4.11.40) through (4.11.42), respectively.  Using the Brooks-Corey soil-moisture retention
function, the aqueous, NAPL, and gas relative permeabilities appear as shown in Equations
(4.11.43) through (4.11.45), respectively.
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krg  =  s g( )1/2
1 − s t( )1/m[ ]2m

         (4.11.42)
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krg  =  s g( )1/2
1 − s t( ) 1 + 1/( ) 

 
 
 
2

(4.11.45)

4.11.3.3  Relative Permeability Functions for Systems with Fluid Entrapment

Nonwetting fluid entrapment affects the aqueous permeability by displacing water into
larger pores. Parker and Lenhard [1987] have shown that this effect is small. In the STOMP
model, we employ simplified permeability relations according to the theory by Kaluarachchi and
Parker [1992]. Aqueous phase relative permeabilities are single-valued functions of the aqueous
phase saturation. NAPL relative permeabilities are computed with the assumption that only free
NAPL is continuous. Hysteresis in gas relative permeability for aqueous-gas systems also occurs
as a result of gas entrapment, where the net effect is to reduce the pore space available for gas
flow.  Therefore, the only changes required in the gas relative permeability functions are to
replace the effective aqueous saturations with the apparent aqueous saturations in the pore size
integrals and to replace total gas saturation with free gas saturation in the tortuosity terms.

Aqueous, NAPL, and gas relative permeability can be computed as a function of fluid
phase saturations from modified forms of the Burdine [1953] relative permeability model,
integrated with certain forms of the soil-moisture retention function.  If the van Genuchten and
Brooks and Corey soil-moisture retention functions are used, closed-form expressions for fluid
phase relative-permeability can be derived.  Using the van Genuchten soil-moisture retention
function, the aqueous, NAPL, and gas relative permeabilities appear as shown in Equations
(4.11.46) through (4.11.48), respectively.  Using the Brooks-Corey soil-moisture retention
function, the aqueous, NAPL, and gas relative permeabilities appear as shown in Equations
(4.11.49) through (4.11.51), respectively.

  
krl  =  s l( )2

1 − 1 − s l
1/ m( )m 

 
 
 (4.11.46)
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krg  =  s g f( )2
1 − st( )1/ m 
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         (4.11.48)

  krl  =  s l( ) 3 + 2/( ) (4.11.49)

  
krn  =  sn( )2
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(4.11.50)

krg  =  s gt( )2
1 − st( ) 1+ 2/( ) 
 

 
 

         (4.11.51)

Aqueous, NAPL, and gas relative permeability can be computed as a function of fluid
phase saturations from modified forms of the Mualem [1976] relative permeability model,
integrated with certain forms of the soil-moisture retention function.  If the van Genuchten and
Brooks and Corey soil-moisture retention functions are used, closed-form expressions for fluid
phase relative-permeability can be derived.  Using the van Genuchten soil-moisture retention
function the aqueous, NAPL, and gas relative permeabilities appear as shown in Equations
(4.11.52) through (4.11.54), respectively.  Using the Brooks-Corey soil-moisture retention
function, the aqueous, NAPL, and gas relative permeabilities appear as shown in Equations
(4.11.55) through (4.11.57), respectively.
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krg  =  s g f( )1/2
1 − st( )1/ m 
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 
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  krl  =  s l( ) 5/2 + 2/( )
(4.11.55)
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krg  =  s g f( )1/2
1 − st( ) 1+ 1/( ) 

 
 
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(4.11.57)

4.12 Mechanical Dispersion

Hydraulic dispersion of transported solutes occurs in porous media because of variations
in fluid velocity on the pore scale.  With the assumption of relatively fast mixing times for
solutes along a direction normal to the mean convection flow direction, a special case of
convective-dispersive transport occurs.  Under these conditions, the variations in pore velocity
produce a hydrodynamic dispersion of which may mathematically be described in a form
identical to diffusive flux [Bear 1972].  Additionally, because of the identical forms the
coefficients of diffusion and mechanical dispersion can be combined to yield a single diffusion-
dispersion coefficient.  The hydrodynamic dispersion coefficient relates the dispersion flux of a
dissolved solute to the gradient in solute concentration in the advective fluid and is a second-order
symmetric tensor, which is a function of the porous media and fluid phase.  Components of the
hydrodynamic dispersion coefficient are computed from the principal fluid Darcy velocity flux
components and two empirical parameters related to the porous media, according to Equations
(4.12.1) through (4.12.3)

Dh x
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4.13  Partition Coefficients

Equilibrium conditions are assumed for computing salt and/or solute phase distributions. 
Salt occurs either dissolved in the aqueous phase or sorbed onto the porous media according to
linear or nonlinear isotherm models.  Salts concentrations in the gas and ice phases are neglected. 
Solutes are assumed either dissolved in a fluid phase or sorbed onto the porous media according
to linear isotherm models.  Solute concentrations in the ice phase is neglected.

4.13.1  Salt Partition Coefficients

Equilibrium concentrations for salts are computed using either a linear isotherm model, the
nonlinear Freundlich model, or the nonlinear Langmuir model, according to Equations (4.13.1)
through (4.13.3), respectively.

  

Ss

s
 =  Ksl Sl (4.13.1)

  

Ss

s
 =  Ksl Sl( )n (4.13.2)

  

Ss

s
 =  

S s Ksl
S Sl

1 + Ksl
S Sl( )            (4.13.3)

4.13.2  Surfactant Partition Coefficients

Equilibrium concentrations for surfactants in the Water-Oil-Dissolved Oil-Surfactant
operational mode are computed using either a linear isotherm model, the nonlinear Langmuir
model, or the nonlinear Freundlich model, according to Equations (4.13.4) through (4.13.6),
respectively.

1 − nT( ) s
sf

s = Ksl
sf [1] l

sf
l           (4.13.4)
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s =
Ksl

sf [3] l
sf

l

1 + Ksl
sf [4] l

sf
l( )           (4.13.6)

4.13.3 Dissolved-Oil Partition Coefficients

Equilibrium concentrations for dissolved oil in the Water-Oil-Dissolved Oil and the
Water-Oil-Dissolved Oil-Surfactant operational modes are computed using either a linear
isotherm model, the nonlinear Langmuir model, or the nonlinear Freundlich model, according to
Equations (4.13.7) through (4.13.9), respectively.

1 − nT( ) s
do

s = Ksl
do[1] l

do
l           (4.13.7)

1 − nT( ) s
do

s = Ksl
do[1] l

do
l( )Ksl

do [2]
          (4.13.8)

1 − nT( ) s
do

s =
Ksl

do[3] l
do

l

1 + Ksl
do[4] l

do
l( )           (4.13.9)

4.13.4  Solute Partition Coefficients

With the equilibrium assumption, solute concentrations can be expressed with respect to
either volumetric or phase concentrations.  The volumetric solute concentration is related to
phase concentrations according to Equation (4.13.10). Equilibrium concentrations for solutes are
computed using either a linear isotherm model, the nonlinear Freundlich model, or the nonlinear
Langmuir model.

Linear partitioning of solutes between the porous media and aqueous phase is expressed
through the solid-aqueous distribution coefficient defined in Equation (4.13.11).  The gas-aqueous
distribution coefficient, which can be computed as a function temperature, defines the
partitioning of dissolved solutes between the gas and aqueous phases according to Equation
(4.13.12).  The aqueous-NAPL distribution coefficient defines the partitioning of dissolved
solutes between the aqueous and NAPL phases according to Equation (4.13.13).  Equations
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(4.13.10) through (4.13.13) are used to derive expressions for volumetric phase concentrations as
a function of the total volumetric solute concentration and phase saturations according to
Equations (4.13.14) through (4.13.17), for the aqueous, gas, NAPL, and solid phases,
respectively.  For the Water operational mode, the retardation coefficient, which represents the
ratio between aqueous fluid migration velocity and solute migration velocity, is defined according
to Equation (4.13.18).  

  

C  =  nD s C

= l,g,n
∑ + 1 − nT( ) Cs (4.13.10)
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For the Water and Water-Air operational modes, an additional model for describing solute
distribution is available, which differs from the above model in the extent of the wetting surface
for unsaturated conditions.  The above model contains the inherent assumption that all of the soil
surfaces remain wetted regardless of the aqueous saturation.  Another approach involves scaling
the wetted surface with saturation, which yields an expression for the solid-aqueous distribution
coefficient according to Equation (4.13.19).  Using this expression for the solid-aqueous
distribution coefficient yields expressions for aqueous-, gas-, and solid-volumetric concentrations,
as shown in Equations (4.13.20) through (4.13.22), respectively.  The retardation coefficient for
the water mode is computed according to (4.13.23).
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For the nonlinear Freundlich and Langmuir isotherms, the associated retardation
coefficients are expressed in Equation (4.13.24) and (4.13.25), respectively.
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4.14  Solute Diffusion Coefficients

Solute diffusion coefficients are computed with the assumption of infinite dilution.  The
present version of the simulator additionally ignores phase compositional effects.  The effects of
temperature and pressure on solute diffusion coefficients, however, are considered.  Aqueous
diffusivity is expressed as a function of temperature and solvent viscosity following the theory
of Wilke and Chang [Reid et al. 1987] according to Equation (4.14.1).  Reference values for
diffusion coefficients in liquid solvents can be estimated from the method of Wilke and Chang
[Reid et al. 1987] according to Equation (4.14.2).  For diffusion of solutes through the gas phase,
the diffusivity is expressed as a function of temperature and pressure following the model of
Fuller [Reid et al. 1987], according to Equation (4.14.3).  Reference values for diffusion
coefficients in gas solvents can be estimated from the method of Slattery and Bird [1958]
according to Equation (4.14.4).  NAPL diffusivity is expressed as a function of temperature and
solvent viscosity following the theory of Wilke and Chang [Reid et al. 1987] according to
Equation (4.14.5).  
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For the Two-Phase Nonvolatile operational mode an alternate expression for aqueous-
phase diffusion is available.  The effective aqueous diffusion coefficient is defined according
Equation (4.14.6) and represents the aqueous diffusivity for variably saturated porous media. 
An alternate expression for the effective aqueous diffusion coefficient, which is dependent on
soil-solute combinations, is shown in Equation (4.14.7).

  Dl
C

e  =  l sl nD Dl
C (4.14.6)

  
Dl

C
e  =  Dl

C as
C exp nD sl bs

C( ) (4.14.7)

4.15  Solute Chain Decay

Decay or generation of solutes occurs in the STOMP simulator through an Arrhenius
type kinetic reaction according to Equation (4.15.1).  The decay-rate constant can be related to
the radionuclide half-life according to Equation (4.15.2).  Production of progeny solutes from
parent solutes is computed through an Arrhenius type kinetic reaction according to Equation
(4.15.3), where the chain decay fraction is a function of the parent-progeny pair, and the
subscripts j  and k  indicate parent and progeny solutes respectively.

C

t
 =  − C C (4.15.1)

C  =  
ln 2( )
T1/2

C (4.15.2)

Ck

t
 =  j F jk C j (4.15.3)

4.16 First-Order Reactions

The first-order and Monod chemical reaction model incorporated into the STOMP
simulator solves a series of chemical reactions of the general form shown in Equation (4.16.1)
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Npr Apr + Nr Ar
reactants

∑  ⇒ Np Ap
products

∑ (4.16.1)

For first-order reactions, the reaction rate for each chemical reaction is dependent on the
molar concentration of the primary reactant according to Equations (4.16.2) through (4.16.4)

dC pr

dt
 =  −

Cpr ln 2( )
tpr
1/ 2 (4.16.2)

dCr
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Cpr ln 2( ) Nr fpr

tpr
1/2 Npr

(4.16.3)

dC p

dt
 =  

Cpr ln 2( ) Np fpr

t pr
1/2 Npr

(4.16.4)

The reaction rate factor is a function of the primary and secondary reactant molar
concentrations, equation stoichiometry, reaction half-life, and simulation time step according to
Equations (4.16.5) and (4.16.6):
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−1/2
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 
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The right-hand-side of Equation (4.16.6) represents the ratio of the molar amount of
secondary reactant which could be consumed over the amount of secondary reactant available. 
The reaction rate function, see Equation (4.16.5), has the effect of modulating the reaction rate
from first-order kinetics under conditions for which at least one of the secondary reactants nears
being totally consumed.

4.17 Kinetic Dissolution/Solubilization of Oil

Several theoretical and experimental studies have shown that the aqueous-phase
concentrations of dissolved oil can be significantly lower than equilibrium conditions for
relatively large entrapped NAPL ganglia, high groundwater velocities, or low NAPL saturations
[e.g., Mayer and Miller 1996]. These studies often yield formulations for mass transfer
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correlations between the NAPL and aqueous phases, that relate the mass transfer coefficient, in
dimensionless form as the Sherwood number Sh, to other system properties.  Two general forms
of these correlations have been incorporated into the Water-Oil-Dissolved Oil and the Water-Oil-
Dissolved Oil-Surfactant operational modes.  The first form, shown in Equation (4.17.1), is based
on the Gilland-Sherwood formulation, which is typically applied to describing mass transport
through liquid boundary layers for laminar flows.

  
Sh  =  

kn , l
do dp

2

Dml
do

 =  a + bRem Scn (4.17.1)

where the parameters a, b, m, and n are determined empirically.  The second form, as shown in
Equation (4.17.2) depends on the NAPL saturation as

Sh =
kn ,l

dodp
2

Dml
do = a + bRem nDsn( )n            (4.17.2)

where the Schmidt number Sc is replaced by the NAPL content. Implementation of Equations
(4.17.1) and (4.17.2) indicate that similar mass transfer relations are assumed for oil dissolution
and micellar solubilization although Abriola et al. [1993] stated that, based on detailed
experiments, the mechanisms governing both processes are probably fundamentally different.
Since more appropriate equations for micellar solubilization are currently lacking, it was decided
to compute oil dissolution and micellar solubilization using similar relations.

Several authors [e.g., Pennell et al., 1993] have shown that the equilibrium concentration
of solubilized oil in the aqueous phase is a linear function of the surfactant concentration above
the critical micellar concentration (CMC). The following linear expression is used in the simulator
to relate the equilibrium concentration of dissolved oil with dissolved surfactant concentration

   C l
do  =  a + bmax Cl

s − CMC( ) ,0[ ]           (4.17.3)

4.18 Mobilization of Nonaqueous Phase Liquids

Mobilization of entrapped NAPL has been shown to be depending on viscous, buoyancy
and capillary forces through the total trapping number [Pennell et al. 1996] defined as

Nt = Nc
2 + 2NcNb sin + Nb

2           (4.18.1)
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where the angle  refers to the flow angle with respect to the horizontal (measured counter-
clockwise). The capillary number is defined in terms of the magnitude of the aqueous flow and
NAPL-aqueous interfacial tension as

Nc =
u l l

nl cos
          (4.18.2)

and the he Bond number in terms of the NAPL-aqueous interfacial tension is defined as

Nb = n − l( )gkrlkz

nl cos
         (4.18.3)

Effective residual NAPL saturation is computed as a function of the trapping number using the
empirical correlation shown in Equation (4.18.4)
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        (4.18.4)

Changes in the trapping number (e.g.,  via changes in the interfacial tension or aqueous
flow rates) result in changes to the effective residual NAPL saturation, which in turn can alter the
volumes of free and entrapped NAPL.  Converting entrapped NAPL to free NAPL through this
processes effectively mobilizes a portion of the entrapped NAPL. This type of relationship has
been used by Delshad et al. [1996] in the UTCHEM code and has experimentally been verified
by Pennell et al. [1996]. Introducing surfactants into aqueous phase liquids in three-phase
systems reduces the interfacial tension between two phase pairs (i.e., gas-aqueous and NAPL-
aqueous).  Water is the primary constituent in the aqueous phase, but in the Water-Oil-Dissolved
Oil-Surfactant operational mode it may also include dissolved amounts of surfactant, oil, and air.
Changes in interfacial tension with surfactant concentration affect the mobilization of free and
trapped NAPLs.  These effects are modeled in the simulator through modifications to the
saturation-capillary pressure (s-P) scaling factors and in the residual NAPL saturations.

To provide continuity between two-phase (aqueous-gas) and three-phase (aqueous-
NAPL-gas) saturation systems the scaling factors are defined as [Lenhard 1994; Lenhard and
Parker 1987]
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gn = ij

gn
, nl = ij

nl
, gl = ij

gl
        (4.18.5)

where the interfacial tension between fluid pair ij refers to the fluid pair used to determine the s-P
relation, which is typically the gas-aqueous pair.  The s-P scaling factors are related by

1

gn
+

1

nl
=

1

gl
        (4.18.6)

which implies the following relationship among the interfacial tensions

gn + nl = gl         (4.18.7)

Adding surfactant to the aqueous phase produces a reduction in the interfacial tension of the gas-
aqueous and NAPL-aqueous fluid pairs, which directly correspond to increases in the gas-
aqueous and NAPL-aqueous s-P scaling factors.  Continuity of saturation between two- and
three-phase systems is achieved by using the saturation functions for both systems, and
restricting the NAPL pressure to values greater than or equal to the critical NAPL pressure
defined as

Pn
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gnPg + nlPl

gn + nl
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5.0  Primary Variables and Phase Transitions

5.1  Introduction

Each governing conservation equation in the STOMP simulator is solved for one
independent primary variable.  For systems with multiple phases, the primary variable for a
particular governing equation can vary between nodes within the computational domain, where
primary variables are chosen by the simulator according to the local phase condition.  This
numerical solution scheme is frequently referred to as primary variable switching.  The Gibbs
phase rule [Wark, 1995], shown in Equation (5.1.1), states that the number of independent
intensive properties required to fix the intensive state of a system equals the number of
components plus two minus the number of phases.  The number of independent intensive
properties is frequently referred to as the degrees of freedom for the system.  The
thermodymanic and hydrologic state of a porous media system is specified when the number of
independent intensive properties equals the number of degrees of freedom according to the phase
rule.  The number of solved conservation equations in the STOMP simulator equals the number
of independent intensive properties less the number of intensive properties fixed through
assumptions.

F  =  C + 2 − P (5.1.1)

Phase transitions (i.e., phase appearances and disappearances) are characteristic
phenomena of multiple phase systems, which require special numerical techniques to resolve. 
Historically, phase transitions have been handled by restricting phases from completely
disappearing and/or through the application of primary variable switching schemes, where the
solved primary variables change with the appearance or disappearance of a phase.  The STOMP
simulator uses a combination of these two techniques.  For all operational modes and phase
systems, the aqueous phase is restricted from completely disappearing.  The aqueous-phase
saturation is restricted to values greater than zero through the application of a vapor-pressure
lowering scheme and the soil moisture-retention function.  For nonisothermal systems, the
aqueous-phase saturation is not artificially restricted to values above the residual or irreducible
moisture content, but it is restricted to positive non-zero values.  For operational modes
involving the gas phase, no restrictions are placed on the appearance or disappearance of the gas
phase.  Gas-phase transitions are treated by switching the primary variable (unknown) for the
air-mass conservation equation.  Similarly, for operational modes involving NAPL, no restrictions
are applied to the appearance or disappearance of NAPL.  NAPL transitions are numerically
treated with a switch in the primary variable for the oil-mass conservation equation.
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5.2  Water-Air Systems

With the assumption that the aqueous-phase never completely disappears, phase
transitions for water-air systems only involve the appearance, total entrapment, and
disappearance of the gas-phase.  Total entrapment of the gas phase is recognized only for
hysteretic saturation functions.  Under this condition, the apparent aqueous saturation equals one
and the entrapped gas saturation becomes the unknown primary variable for the air-mass
conservation equation.  For two-phase porous media systems, phase saturations increase the
number of degrees of freedom according to Equation (5.2.1).

F  =  C + 3 − P (5.2.1)

The Water operational mode computes aqueous-phase flow and transport under the
assumption of a passive gas phase.  This operational mode involves one component (water) and
one phase (aqueous); therefore, there are three degrees of freedom or three independent intensive
variables which must be specified to fix the thermodynamic and hydrologic state of the system. 
The assumptions of isothermal conditions and a passive gas phase equate to a fixed temperature
and gas pressure, which yields only one independent intensive variable to be solved.  Because of
the assumption that the aqueous phase never totally disappears, no phase transitions are
associated with the Water operational mode and the water-mass conservation equation is solved
for a single unknown: the aqueous pressure.  

The Water-Air operational mode computes aqueous- and gas-phase flow and transport. 
This operational mode involves two components (water and air) and two phases (aqueous and
gas); therefore, there are three degrees of freedom.  The assumption of isothermal conditions fixes
the temperature, which yields two independent intensive variables to be solved.  Two-phase
conditions are recognized with this operational mode: aqueous-phase saturated and unsaturated. 
Saturation functions with gas entrapment add an additional phase condition: aqueous-phase
saturated, with entrapped gas.  In the unsaturated state, aqueous and gas phases exist in
equilibrium and the two primary variables are the aqueous and gas pressures.  In the saturated
state, the gas-phase has completely disappeared and the two primary variables become the
aqueous pressure and mole-fraction of air dissolved in the aqueous phase.  For saturation
functions with gas entrapment, a phase condition is recognized which is characterized with an
apparent aqueous saturation of one and total entrapment of the gas phase.  In this phase,
condition the entrapped gas and aqueous phase are in equilibrium and the primary variables
become the aqueous pressure and entrapped gas saturation.   These primary variable sets and
phase condition descriptions are summarized in Table 5.1.

The Water-Air-Energy operational mode computes aqueous phase, gas phase, and energy
flow and transport.  This operational mode is similar to the Water-Air operational mode, with the
exception that the system temperature becomes an additional independent variable, which
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requires the solution of the energy conservation equation.  As with the Water-Air operational
mode, two- and three-phase conditions and associated primary variable sets are recognized,
respectively, for nonhysteretic and hysteretic saturation functions.  The primary variable sets
and phase conditions for the Water-Air-Energy operational mode are summarized in Table 5.1.

Table 5.1.  Water-Air System Primary Variables

Water Mode

Description Primary Variable Set

Aqueous   Pl
Aqueous w/ Entrapped Gas   Pl

Water-Air Mode

Description Primary Variable Set

Aqueous w/ Dissolved Air   Pl , l
a

Aqueous w/ Entrapped Gas   Pl , sg

Aqueous-Gas   Pl , Pg

Water-Air-Energy Mode

Description Primary Variable Set

Aqueous w/ Dissolved Air   T ,Pl , l
a

Aqueous w/ Entrapped Gas   T ,Pl , sg

Aqueous-Gas   T ,Pl , Pg

5.3  Water-Ice-Air Systems

Flow and transport in water-ice-air systems are computed by the Water-Air-Energy
operational mode of the STOMP simulator.  For water-ice-air systems, this operational mode
involves two components (water and air) and three phases (aqueous, ice, and gas).  Three-phase
systems in porous media require two saturation-capillary pressure functions which adds two
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additional constraints to the Gibbs phase rule as shown in Equation (5.3.1).  The water-ice-air
system, therefore, has three degrees of freedom and requires the solution of three conservation
equations, water mass, air mass, and energy.  Only nonhysteretic saturation functions are
recognized by this operational mode for water-ice-air systems.  With the assumption that the
aqueous phase never completely disappears, important phase transitions are those between
saturated and unsaturated conditions for the apparent aqueous saturation.  No primary variable
switching occurs for ice phase appearances and/or disappearances.  The primary variable sets and
phase condition descriptions for water-ice-air systems are shown in Table 5.2.

F  =  C + 4 − P (5.3.1)

Table 5.2.  Water-Ice-Air System Primary Variables

Water-Air-Energy Mode

Description Primary Variable Set

Aqueous w/ Dissolved Air   T , Pl , l
a

Aqueous-Gas   T , Pl , Pg

5.4  Water-Oil Systems

The water-oil systems comprise five operational modes: Water-Oil, Water-Air-Oil,
Water-Air-Oil-Dissolved Oil, Water-Oil-Dissolved Oil-Surfactant and Water-Air-Oil-Energy. 
With the assumption that the aqueous-phase never completely disappears, phase transitions for
water-oil systems involve the appearance, total entrapment, and disappearance of both the
NAPL and gas phase.   The wettability order for these operational modes is assumed to decrease
in the order of water to oil to air.  Total entrapment of the nonwetting phases is recognized only
for hysteretic saturation functions.  The total entrapment and dissolution of nonwetting fluids
represents two-phase condition transitions.  During the transition from partial to total
entrapment of a nonwetting fluid, a primary variable switch is made from pressure to saturation
for the entrapped fluid.  During the transition from total entrapment to total dissolution, a
primary variable switch is made from saturation to mole fraction in the aqueous phase of a
principal component.  Three-phase systems in porous media require two saturation-capillary
pressure functions, which adds two additional constraints to the Gibbs phase rule as shown in
Equation (5.4.1).

F  =  C + 4 − P (5.4.1)
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The Water-Oil operational mode computes aqueous-phase and NAPL flow and transport
under the assumption of a passive gas phase.  This operational mode involves two components
(water and oil) and two phases (aqueous and NAPL).  Therefore, according to Equation (5.4.1),
there are four degrees of freedom (independent intensive variables) which must be specified to fix
the thermodynamic and hydrologic state of the system.  The assumptions of isothermal
conditions and a passive gas phase equate to a fixed temperature and gas pressure, yielding only
two independent intensive variable to be solved.  For nonhysteretic saturation functions, phase
transitions are associated with the appearance and disappearance of NAPL.  When the NAPL
saturation is greater than zero, the primary unknown for one oil mass conservation equation is
the NAPL pressure.  When the NAPL saturation equals zero the primary unknowns for the oil
mass conservation equation is the mole fraction of oil dissolved in the aqueous phase.  For
saturation functions with NAPL entrapment, additional phase transitions are recognized that
involve the total entrapment of the NAPL by the aqueous phase.  This phase condition
represents and intermediate condition between free NAPL and dissolved oil.  For this phase
condition, the primary unknown for one oil mass conservation equation is the entrapped NAPL
saturation.  Primary variable sets and phase conditions for the Water-Oil operational mode are
summarized in Table 5.3.

The Water-Oil-Air operational mode computes aqueous-phase, gas-phase, and NAPL
flow and transport.  This operational mode involves three components (water, air, and oils) and
three phases (aqueous, gas, and NAPL).  Therefore, according to Equation (5.4.1) there are four
degrees of freedom (independent intensive variables) that must be specified to fix the
thermodynamic and hydrologic state of the system.  The assumption of isothermal conditions
equates to a fixed temperature that leaves three independent intensive variables to be solved.  For
nonhysteretic saturation functions, phase transitions are associated with the appearance and
disappearance of the gas phase and NAPL.  When the total liquid saturation is less than one, the
primary unknown for the air mass conservation equation is the gas pressure.  For saturated total
liquid conditions the primary unknown for the air mass equation switches to the mole fraction of
air dissolved in the aqueous phase.  Similarly, for the NAPL transitions, when the NAPL
saturation is greater than zero the primary unknown for the oil mass conservation equation is the
NAPL pressure.  For NAPL saturations equal to zero, the primary unknown for the oil mass
conservation equation is the component mole fractions dissolved in the aqueous phase.  For
saturation functions with fluid entrapment, additional phase transitions are recognized that
involve the total entrapment of gas and NAPL by fluids of greater wettability.  Total fluid
entrapment conditions represent intermediate phase conditions between free-phase and aqueous-
dissolved conditions.  Under total fluid entrapment conditions the primary unknown variable
becomes the saturation of the entrapped fluid.  Primary variable sets and phase condition
descriptions for the Water-Oil-Air operational mode are summarized in Table 5.3.
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The Water-Oil-Air-Energy operational mode computes aqueous-, and gas-phase, NAPL
and energy flow and transport.  This operational mode is similar to the Water-Oil-Air operational
mode, with the exception that the system temperature becomes an additional independent
variable, which requires the solution of the energy conservation equation.  As with the Water-Oil-
Air operational mode, two- and three-phase conditions and associated primary variable sets are
recognized, respectively, for nonhysteretic and nonwetting fluid entrapment saturation functions.
The primary variable sets and phase conditions for the Water-Oil-Air-Energy operational mode
are summarized in Table 5.3.

The Water-Oil-Dissolved Oil operational mode computes aqueous-phase, oil, and
dissolved oil flow and transport. The dissolution process is assumed to be of kinetic nature.  This
operational mode involves three components (water, oil, and dissolved oil) and three phases
(aqueous, gas, and NAPL).  Therefore, according to Equation (5.4.1) there are four degrees of
freedom (independent intensive variables) that must be specified to fix the thermodynamic and
hydrologic state of the system.  The assumption of isothermal conditions equates to a fixed
temperature that leaves three intensive variables to be solved.  For nonhysteretic saturation
functions, phase transitions are associated with the appearance and disappearance of the gas
phase and NAPL. For the NAPL transitions, when the NAPL saturation is greater than zero the
primary unknown for the oil continuity equation is the NAPL pressure.  The primary unknown
for the dissolved oil mass conservation equation is always the mole fraction dissolved in the
aqueous phase.  For saturation functions with fluid entrapment, additional phase transitions are
recognized that involve the total entrapment of gas and NAPL by fluids of greater wettability. 
Total fluid entrapment conditions represent intermediate phase conditions between free-phase
and aqueous-dissolved conditions.  Under total fluid entrapment conditions the primary
unknown variable becomes the saturation of the entrapped NAPL.  Primary variable sets and
phase condition descriptions for the Water-Oil-Dissolved Oil operational mode are summarized
in Table 5.3.

The Water-Oil-Dissolved Oil-Surfactant operational mode computes aqueous-phase, oil,
dissolved oil, and surfactant flow and transport. The dissolution and solubilization processes are
assumed to be of kinetic nature.  This operational mode involves four components (water, oil,
dissolved oil and surfactant) and three phases (aqueous, gas, and NAPL).  Therefore, according to
Equation (5.4.1) there are five degrees of freedom (independent intensive variables) that must be
specified to fix the thermodynamic and hydrologic state of the system.  The assumption of
isothermal conditions equates to a fixed temperature that leaves four intensive variables to be
solved.  For nonhysteretic saturation functions, phase transitions are associated with the
appearance and disappearance of the gas phase and NAPL. For the NAPL transitions, when the
NAPL saturation is greater than zero the primary unknown for the oil continuity equation is the
NAPL pressure.  The primary unknown for the dissolved oil mass conservation equation is
always the mole fraction dissolved in the aqueous phase.  For the surfactant mass conservation
equation, the primary unknow is always the surfactant mole fraction. For saturation functions
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with fluid entrapment, additional phase transitions are recognized that involve the total
entrapment of gas and NAPL by fluids of greater wettability.  Total fluid entrapment conditions
represent intermediate phase conditions between free-phase and aqueous-dissolved conditions. 
Under total fluid entrapment conditions the primary unknown variable becomes the saturation of
the entrapped NAPL.  Primary variable sets and phase condition descriptions for the Water-Oil-
Dissolved Oil-Surfactant operational mode are summarized in Table 5.3.

Table 5.3.  Water-Oil-Air System Primary Variables

Water-Oil Mode

Description Primary Variable Set

Aqueous w/ Dissolved Oil Pl, l
o

Aqueous w/ Trapped NAPL Pl, sn

Aqueous-Gas w/ Dissolved Oil Pl, l
o

Aqueous-Gas w/ Trapped NAPL Pl, sn

Aqueous-NAPL Pl, Pn

Aqueous-NAPL-Gas Pl, Pn

Water-Oil-Air Mode

Description Primary Variable Set

Aqueous w/ Dissolved Oil w/ Dissolved Air Pl, l
o , l

a

Aqueous w/ Dissolved Oil w/ Trapped Gas Pl, l
o ,sg

Aqueous w/ Trapped NAPL w/ Dissolved Air Pl, sn , l
a

Aqueous w/ Trapped NAPL w/ Trapped Gas Pl, sn , l
a

Aqueous-Gas w/ Dissolved Oil Pl, l
o ,Pg

Aqueous-Gas w/ Trapped NAPL Pl, sn ,Pg

Aqueous-NAPL w/ Dissolved Air Pl, Pn , l
a

Aqueous-NAPL w/ Trapped Gas Pl, Pn ,sg

Aqueous-NAPL-Gas Pl, Pn ,Pg
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Water-Oil-Air-Energy Mode

Description Primary Variable Set
Aqueous w/ Dissolved Oil w/ Dissolved Air T ,Pl , l

o , l
a

Aqueous w/ Dissolved Oil w/ Trapped Gas T ,Pl , l
o ,sg

Aqueous w/ Trapped NAPL w/ Dissolved Air T ,Pl ,sn, l
a

Aqueous w/ Trapped NAPL w/ Trapped Gas T ,Pl ,sn, l
a

Aqueous-Gas w/ Dissolved Oil T ,Pl , l
o , Pg

Aqueous-Gas w/ Trapped NAPL T ,Pl ,sn, Pg

Aqueous-NAPL w/ Dissolved Air T ,Pl ,Pn , l
a

Aqueous-NAPL w/ Trapped Gas T ,Pl ,Pn , l
a

Aqueous-NAPL-Gas T ,Pl ,Pn , Pg

Water-Oil-Dissolved Oil Mode

Description Primary Variable Set
Aqueous w/ Dissolved Oil Pl, Pn , l

o

Aqueous w/ Trapped NAPL w/ Dissolved Oil Pl, sn , l
o

Aqueous-Gas w/ Dissolved Oil Pl, Pn , l
o

Aqueous-Gas w/ Trapped NAPL w/ Dissolved Oil Pl, sn , l
o

Aqueous-NAPL w/ Dissolved Oil Pl, sn , l
o

Aqueous-NAPL-Gas Pl, sn , l
o

Water-Oil-Dissolved Oil-Surfactant Mode

Description Primary Variable Set
Aqueous   Pl, Pn, l

o, l
s

Aqueous w/ Trapped NAPL   Pl, sn, l
o, l

s

Aqueous-Gas   Pl, Pn, l
o, l

s

Aqueous-Gas w/ Trapped NAPL   Pl, sn, l
o, l

s

Aqueous-NAPL   Pl, Pn, l
o, l

s

Aqueous-NAPL-Gas   Pl, Pn, l
o, l

s
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6.0  Numerical Solution Theory

6.1  Introduction

The STOMP simulator solves the governing-conservation equations and constitutive
functions using numerical techniques for nonlinear systems.  This section documents the
transformation of the governing-conservation equations from partial-differential form to algebraic
form, algebraic expression of boundary conditions, linearization of the conservation equations and
constitutive functions, and solution of linear systems. 

The governing conservation equations are discretized to algebraic form following the
integrated-finite-difference method of Patankar [1980].  This transformation requires that the
physical domain be spatially discretized into an orthogonal computational domain which
comprises nonoverlapping volumes (nodes).  Each volume can have a maximum of two
neighboring nodes for each dimensional direction.  Intrinsic properties are assumed to be uniform
over the volume domain and are defined for a node point at the geometric center of the volume. 
Flux quantities are defined at the geometric center of the surfaces between node volumes and
along a direction parallel to the surface normal.  Fluxes across node surfaces between neighboring
inactive nodes and/or adjacent to the domain boundary are controlled through boundary
conditions.  Solution of the governing-conservation equations in time requires discretization of
the time domain.  The method of Patankar [1980] is implicit using backward Euler time
differencing.  The expressions that result from discretizing the governing equations are nonlinear
algebraic equations.

The STOMP simulator considers two-orthogonal grid systems: Cartesian and cylindrical. 
Coordinate directions for Cartesian systems follow the “right-hand” rule from the “x” to “y” to
“z” directions.  Positive and negative directions along the “x,” “y,” and “z” coordinates are
referred to as “east,” “west,” “north,” “south,” “top,” and “bottom,” respectively.  The
gravitational vector can be aligned arbitrarily with respect to the Cartesian directions.  Coordinate
directions for cylindrical systems are referred to as “r” for radial, “Θ” for azimuthal, and “z” for
vertical.  The gravity vector for the cylindrical system is always aligned with the “z” coordinate
direction.

The system of algebraic equations that include the discretized governing-conservation
equations and the constitutive functions are nonlinear.  Nonlinearities in the soil-moisture
retention functions, relative permeability functions, and physical properties near phase
transitions are the primary contributors.  Conversion of the algebraic equations from nonlinear to
linear form follows the iterative Newton-Raphson [Kreyszig 1979] technique for multiple
variables.  The technique typically yields quadratic convergence of the residuals, given
sufficiently close estimates of the primary unknowns.  Each iteration loop requires the solution
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of a system of linear equations in terms of the equation residuals.  Because only orthogonal grid
systems are considered, the system of linear equations will have a block-banded structure.

6.2  Governing Equation Discretization

The governing-conservation equations are discretized following the integrated finite
difference of Patankar [1980], which is locally and globally conserving.  Mass conservation
equations for water, air, and VOC components are nearly identical in form, and therefore result in
similar algebraic forms.  The conservation equation for energy differs from the mass conservation
equations having diffusive-dispersive and advective components.  Discretization of combined
diffusive and advective transport requires donor-cell weighting of the transport components,
therefore yielding differ algebraic forms than those for the mass conservation equations.  The
conservation equation for solute or salt transport is similar in form to that of the energy
conservation equation but its discretization uses a different donor-cell weighting scheme,
therefore resulting in a separate algebraic form.

6.2.1  Mass Conservation Equation

The mass conservation equations, shown in Equations (3.2.1) through (3.4.1), are
discretized by assuming a piecewise profile to express the variation in primary variables between
node points and integrating over the node volume.  The accumulation terms (i.e., left-hand-side
terms) are integrated over the node volume according to Equation (6.2.1), where the specific
terms for the water, air, and oil mass conservation equations appear as shown in Equations
(6.2.2) through (6.2.4), respectively.  Intrinsic properties for the node volume are represented by
properties at the node centroid.  Source terms are similarly integrated over the node volume
according to Equation (6.2.5).
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Flux terms are evaluated on the node surfaces and for the mass conservation equations
comprise advective and diffusive components.  Integration of the flux terms over the node volume
proceeds by first converting the volumetric integral of flux over a control volume to a surface
integral through Green’s theorem [Kreyszig 1979] according to Equation (6.2.6).  Discretizing the
control volume surfaces into node surfaces and defining flux directions parallel to the surface
normal allows the surface integrals to be converted to summations over all node surfaces,
according to Equation (6.2.7).  This transformation strictly requires an orthogonal grid system for
the flux directions to be aligned with the surface normals.  Nonorthogonal systems will yield
mass balance errors.  Darcy fluxes are discretized, in the six coordinated directions, using upwind
interfacial averaging for the component mass fraction, phase density, and relative permeability
and harmonic averaging for the intrinsic permeability and phase viscosity according to
Equation (6.2.7).  These default interfacial averaging schemes can be altered through user input. 
Diffusive fluxes are discretized, in the six coordinate directions, using harmonic averaging for the
combination of terms which comprise an effective diffusion coefficient.  The default interfacial
averaging scheme can be altered for each parameter through user input.  Geometric variables for a
Cartesian coordinate system are shown in Figures 6.1 and 6.2 for the X-Z and Y-Z coordinate
planes, respectively.  Geometric variables for a cylindrical coordinate system are shown in
Figures 6.3 and 6.4 for the R-Z and R-Θ coordinate planes, respectively.

  
∇ F j + ∇ J j( )

=l,g,n
∑

 

 
 

 

 
 

V 
∫ dV  =  F j + J j( )

= l,g,n
∑

 

 
 

 

 
 

Γ
∫ ⋅ n dΓ  for j = w, a, o (6.2.6)

where,

  
F j  =  −

j kr k
∇ P + g zg( )  for = l, g, n and j = w, a, o

  
J j  =  − nD s

M j

M
D j ∇ j  for = l, g, n and j = w, a, o

6.3



  

F j + J j( )
=l,g,n
∑

 

 
 

 

 
 

Γ
∫ ⋅ n dΓ = F j + J j 

 
 
 

=l,g,n
∑

 

 
 

 

 
 

=W ,E ,S ,
    N ,T,B

∑ A  for j = w, a, o (6.2.7)

where,

  

F j  =  −

j kr
uw

k h

h

P + − P −
 
 

 
 

x
+ g

a
zg

 

 

 
 

 

 

 
 

 

for = l, g, n; j = w, a, o; and  = E, W, S, N , B, T

  

J j  =  − nD s
M j

M
D j

h j
+ − j

−
 
 

 
 

x
 

for = l, g, n; j = w, a, o; and  = E, W, S, N , B, T

The mass conservation equations are discretized in time using a fully implicit scheme
according to Equation (6.2.8), where the time levels are indicated with superscripts.  The primary
unknowns for the mass conservation equations are intrinsic properties at node volume centroids
(node grid point) for time level t+ t .  Converting Equation (6.2.8) to residual form yields the
expression shown in Equation (6.2.9).
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6.2.2  Energy Conservation Equation

The energy conservation equation, shown in Equation (3.5.1), is discretized by assuming
a piecewise profile to express the variation in primary variables between node points and
integrating over the node volume.  The thermal capacitance terms (i.e., left-hand-side terms) and
energy source terms are integrated over the node volume according to Equations (6.2.10) and
(6.2.11), respectively.
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Thermal energy is transferred through advection and diffusion.  Spatial discretization of
the advective and diffusive thermal flux proceeds by first converting the volumetric integral of
flux over a control volume to a surface integral using Green’s theorem [Kreysig 1979], according
to Equation (6.2.12).  Surface integrals are approximated by discretizing the control volume
surfaces into node surfaces and summing the contributions to heat flux over the node surfaces,
according to Equation (6.2.13).
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 
 

=W,E ,S,N ,B,T

∑ A

(6.2.13)

where,

  

V  =  −
kr

uw
k h

h

P + − P −
 
 

 
 

x
+ g

a
zg

 

 

 
 

 

 

 
 

 

for = l, g, n  and  = E, W , S, N , B, T

  

J j  =  − nD s
M j

M
D j

h j
+ − j

−
 
 

 
 

x
 

for = l, g, n; j = w, a, o; and  = E, W, S, N , B, T

The diffusive term of Equation (6.2.13) is computed using a user-defined interfacial
average for the effective thermal conductivity, where the default form is harmonic averaging,
according to Equation (6.2.14).  The advective components of Equation (6.2.13) are computed
using upwind (donor cell) averaging, according to Equations (6.2.15) and (6.2.16).

ke ∇ T( )  =  ke
h

T + − T −
 
 

 
 

x
 for = E, W , S, N , B, T (6.2.14)

  

h V( )  =  h( ) − max V − ,0 
 

 
 

− h( ) + max − V + ,0 
 

 
 

for  = l, g, o  and  = E, W , S, N, B, T
(6.2.15)
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h j J j( )  =  h j( ) − max J j
− ,0 

 
 
 

− h j( ) + max − J j
+ ,0 

 
 
 

for  = l, g, o; j = w, a, o; and  = E, W , S, N , B, T

(6.2.16)

As with the mass conservation equations, the energy conservation equations are
discretized in time using a fully implicit scheme, according to Equation (6.2.17), where the time
levels are indicated with superscripts.  The primary unknowns for the energy equation are the
temperatures at the node centroids (node grid points) for time level t + t .  In residual form,
Equation (6.2.17) appears as shown in Equation (6.2.18).

  

V 
E { }t+ t − E { }t

t

 

 
 

 

 
  =  V h j ˙ m j( )

j=w,a,o
∑ + ˙ q 

 
 
 

 
 
 

t+ t

2
 = ke ∇ T( ){ }t+ t 

  
 

  
=W ,E ,S ,

N ,B,T

∑ A

− h V( ) 
  

 
  

t+ t
− h j J j( ) 

 
 

 
 
 

t+ t

j= w,a ,o
∑

 

 
 

 

 
 

=l,g,n
∑

 

 
 

 

 
 

=W ,E,S,
N ,B,T

∑ A

(6.2.17)

  

R e{ }t+ t
 =  V 

E { }t+ t − E { }t

t

 

 
 

 

 
  −  V h j ˙ m j( )

j= w,a,o
∑ + ˙ q 

 
 
 

 
 
 

t+ t

2

− ke ∇ T( ){ }t+ t 

  
 

  
=W ,E,S,

N ,B,T

∑ A

+ h V( )  
 

  
 

t+ t

− h j J j( ) 
 
 

 
 
 

t+ t

j=w,a,o
∑

 

 
 

 

 
 

=l,g,n
∑

 

 
 

 

 
 

=W ,E,S,
N ,B,T

∑ A

(6.2.18)

6.2.3  Salt Conservation Equation

The salt mass conservation equation, shown in Equation (3.6.1), is discretized by
assuming a piecewise profile for the salt concentration between node points and integrating over
the node volume.  The advection and diffusion-dispersion transport terms of the salt mass
conservation equation are combined following the power-law scheme of Patankar [1980]. 
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Integration of the accumulation, source, and decay terms for salt mass over the node volume
proceeds according to Equation (6.2.19).

S

t
− ˙ m S

 
 

 
 dV 

V 
∫  =  

S

t
V − ˙ m S V (6.2.19)

Salt transport fluxes are computed between node points and comprise advective and
diffusive-dispersive components.  Integration of the flux terms proceeds by converting
volumetric integrals to surface integrals following Green’s theorem [Kreyszig 1979], according to
Equation (6.2.20).  Surface integrals are approximated by discretizing the control volume surfaces
into node surfaces and summing the contributions to salt transport over the node surfaces,
according to Equation (6.2.21).  The diffusive-dispersive term of Equation (6.2.21) is computed
using a user-defined interfacial average for the effective diffusion-dispersion coefficient, where the
default scheme is harmonic averaging, according to Equation (6.2.22).

  

− ∇ Sl Vl[ ] + ∇ l sl nD Dl
S + sl nD Dhl( ) ∇ Sl[ ]( ) 

 
 
 

V 
∫ dV 

= − Sl Vl( ) + l sl nD Dl
S + sl nD Dhl( ) ∇ Sl( )[ ]

Γ
∫ ⋅ n dΓ

(6.2.20)

where,

  
Vl  =  −

krl k

l
∇ Pl + l g zg( )

  

− Sl Vl( ) + l sl nD Dl
S + sl nD Dhl( ) ∇ Sl( )[ ]

Γ
∫ ⋅ n dΓ

= − Sl Vl( ) + l sl nD Dl
S + sl nD Dhl( ) ∇ Sl( ) 

  
 
  

=W,E ,S,N ,B,T

∑ A

(6.2.21)

where,

  

Vl  =  −
krl

uw
k h

l
h

Pl + − Pl −( )
x

+ l g
a

zg

 

 
  

 

 
   

for = E, W , S, N, B, T
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l sl nD Dl
S + sl nD Dhl( ) ∇ Sl( )  

=  l sl nD Dl
S + sl nD Dhl

h Sl + − Sl −( )
x

 for  = E, W , S, N , B, T

(6.2.22)

Solution of the salt transport equation depends on the local Peclet number, which
represents the ratio of advective transport to diffusive-dispersive transport, according to
Equation (6.2.23).  The power law scheme is based on the salt concentration profile for steady
conditions with no sources nor decay.  For a Peclet number of zero, diffusion-dispersion
transport dominates and a linear profile of salt concentration occurs between two spacial points. 
For a Peclet number of one, advection and diffusion-dispersion equally contribute to salt
transport and the salt concentration profile will be skewed towards an upstream salt
concentration.  For large Peclet numbers, advection transport dominates and the upstream salt
concentration defines the salt concentration profile between two spacial points.  The power-law
scheme closely approximates the exact solution for steady conditions without excessive
computational expense.  Salt flux from combined advective and diffusive-dispersive transport can
be expressed using the power-law scheme according to Equation (6.2.24).

  

Pel  =  
Vl x

l sl nD Dl
S + sl nD Dhl

h (6.2.23)

  

Gl
S  =  − Sl + max − Vl , 0( ) + Dl

S
e( ) max 1 −

0.1 Vl

Dl
S

e( )
 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

5

, 0

 

 

 
  

 

 

 
 

 

 

 
 
 

 

 

 
 
 

+ Sl − max Vl , 0( ) + Dl
S
e( ) max 1 −

0.1 Vl

Dl
S
e( )

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

5

, 0

 

 

 
  

 

 

 
 

 

 

 
 
 

 

 

 
 
 

for  = W, E, S, N , B, T

(6.2.24)

where,

  
Dl

S
e( )  =  

l sl nD Dl
S + sl nD Dhl

h

x
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The salt conservation equation is discretized in time using a fully implicit scheme,
according to Equation (6.2.25), where the time levels are indicated with superscripts.  The
primary unknowns for the salt conservation equation are the salt volumetric mass concentrations
at the node centroids (node grid points) for time level t + t .  In residual form, Equation (6.2.25)
appears as shown in Equation (6.2.26).

  

V 
S{ }t+ t − S{ }t

t

 

  
 

   =  V ˙ m S{ }t+ t

2

+ Gl
S

W − Gl
S

E + Gl
S

S − Gl
S

N + Gl
S

B − Gl
S

T

(6.2.25)

  

R S{ }t+ t
 =  V 

S{ }t+ t − S{ }t

t

 

  
 

  − V ˙ m S{ }t+ t

2

− Gl
S

W + Gl
S

E − Gl
S

S + Gl
S

N − Gl
S

B + Gl
S

T

(6.2.26)

6.2.4  Solute Conservation Equation

The solute mass conservation equation, shown in Equation (3.7.1), is discretized by
assuming a piecewise profile for the solute concentration between node points and integrating
over the node volume.  Integration of the accumulation, source, and decay terms for solute mass
over the node volume proceeds according to Equation (6.2.27).

C

t
− ˙ m C − ˙ R C C

 
 

 
 dV 

V 
∫  =  

C

t
V − ˙ m C V − ˙ R C C V (6.2.27)

Solute transport fluxes are computed between node points and comprise advective and
diffusive-dispersive components.  Integration of the flux terms proceeds by converting
volumetric integrals to surface integrals following Green’s theorem [Kreyszig 1979], according to
Equation (6.2.28).  Surface integrals are approximated by discretizing the control volume surfaces
into node surfaces and summing the contributions to solute transport over the node surfaces,
according to Equation (6.2.29).  The diffusive-dispersive term of Equation (6.2.29) is computed
using a user-defined interfacial average for the effective diffusion-dispersion coefficient, where the
default scheme is harmonic averaging, according to Equation (6.2.30).
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−  ∇ C V[ ]( )
= l,g,n
∑ +  ∇ s nD DC + s nD Dh( ) ∇ C[ ] 

 
 
 

= l,g,n
∑

 

 
 

 

 
 

V 
∫ dV 

= −  C V( )
= l,g,n
∑ +  s nD DC + s nD Dh( ) ∇ C( )

= l,g,n
∑

 

 
 

 

 
 

Γ
∫ ⋅ n dΓ

(6.2.28)

where,

  
V  =  −

kr k
∇ P + g zg( )  for = l, g, n

  

 C V( )
= l,g,n
∑ −  s nD DC + s nD Dh( ) ∇ C( )

= l,g,n
∑

 

 
 

 

 
 

Γ
∫ ⋅ n dΓ

=  C V( )
= l,g,n
∑ −  s nD DC + s nD Dh( ) ∇ C( )

= l,g ,n
∑

 

 
 

 

 
 

=W,E ,S,
    N ,B,T

∑ A

(6.2.29)

where,

  

V  =  −
kr

uw
k h

h

P + − P −
 
 

 
 

x
+ g

a
zg

 

 

 
 

 

 

 
 

 

for = l, g, n  and  = E, W , S, N , B, T

  

s nD DC + s nD Dh( ) ∇ C( )  

=  s nD DC + s nD Dh

h C + − C −
 
 

 
 

x
 

for  = l, g, n  and  = E, W , S, N , B, T

(6.2.30)

The transport terms of the solute mass conservation equation are resolved with either the
power-law scheme of Patankar [1980] or with a third-order scheme using Total Variation
Diminishing (TVD) criteria [Datta Gupta et al., 1992]. 
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6.2.4.1  Patankar’s [1980] Power Law Scheme

Solution of the solute transport equation depends on the local Peclet number, which
represents the ratio of advective transport to diffusive-dispersive transport, according to
Equation (6.2.31).  The power law scheme is based on the solute concentration profile for steady
conditions with no sources nor decay.  For a Peclet number of zero, diffusion-dispersion
transport dominates and a linear profile of solute concentration occurs between two spacial
points.  For a Peclet number of one, advection and diffusion-dispersion equally contribute to
solute transport and the solute concentration profile will be skewed towards an upstream solute
concentration.  For large Peclet numbers, advection transport dominates and the upstream solute
concentration defines the solute concentration profile between two spacial points.  The power-
law scheme closely approximates the exact solution for steady conditions without excessive
computational expense.  Solute flux from combined advective and diffusive-dispersive transport
can be expressed using the power-law scheme according to Equation (6.2.32).

Pe  =  
V x

s nD DC + s nD Dh

h (6.2.31)

  

GC  =  − C + max − V , 0 
 

 
 + DC

e( ) max 1 −
0.1 V

DC
e( )

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

5

, 0

 

 

 
 
 

 

 

 
  

 

 

 
 
 

 

 

 
 
 

+ C − max V , 0
 
 

 
 + DC

e( ) max 1 −
0.1 V

DC
e( )

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

5

, 0

 

 

 
 
 

 

 

 
 
 

 

 

 
 
 

 

 

 
 
 

for  = l, g, n  and  = W , E, S, N , B, T

(6.2.32)

where,

DC
e( )  =  

s nD DC + s nD Dh

h

x
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The discretized solute concentration equation can be written in two compact forms.  The
first form uses the expressions of solute flux according to Equation (6.2.33).  The second form
uses a linear system format with coefficients for the solute concentrations according to
Equation (6.2.34).

  
GC

W
− GC

E
+ GC

S
− GC

N
+ GC

B
− GC

T( )
=l,g,n
∑  =  

C

t
V − ˙ m C V − ˙ R C C V (6.2.33)

aP CP − a C
=W ,E ,S ,N ,B,T

∑  =  
C

t
V − ˙ m C V − ˙ R C C V (6.2.34)

where,

  
a  =  a

=l,g,n
∑

a
P

 =  a
=W,E,S,N ,B,T

∑ + V
=E ,N ,T

∑ − V
=W ,S,B

∑

  

a  =  De
C( ) max 1 −

0.1 V

De
C( )

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

5

, 0

 

 

 
 
 

 

 

 
 
 

+ max V , 0 
 

 
  

for  = W, S, B and  = l, g, n

  

a  =  De
C( ) max 1 −

0.1 V

De
C( )

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

5

, 0

 

 

 
 
 

 

 

 
 
 

+ max − V , 0 
 

 
  

for  = E, N , T  and  = l, g, n

The solute mass conservation equation is discretized in time using a fully implicit scheme,
according to Equation (6.2.35), in linear system format, where time levels are indicated with
superscripts.
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a C{ }t+ t

= P,W,E ,S,N ,B,T

∑  =  
CP{ }t

t
V − ˙ m C V (6.2.35)

where,

  
a  =  a

=l,g,n
∑

a
P

 =  a
=W,E,S,N ,B,T

∑ + V
=E ,N ,T

∑ − V
=W ,S,B

∑ +
V 

t
+ ˙ R C V 

  

a  =  De
C( ) max 1 −

0.1 V

De
C( )

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

5

, 0

 

 

 
 
 

 

 

 
 
 

+ max V , 0 
 

 
  

for  = W, S, B and  = l, g, n

  

a  =  De
C( ) max 1 −

0.1 V

De
C( )

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

5

, 0

 

 

 
 
 

 

 

 
 
 

+ max − V , 0 
 

 
  

for  = E, N , T  and  = l, g, n

6.2.4.2  TVD Transport

For advection-dominated flow (high Peclet numbers), users have the option to employ a
third-order scheme using a TVD technique [Datta Gupta et al. 1991]. Conventional techniques,
like the one discussed by Patankar [1980], suffer from artificial diffusion that smears otherwise
sharp fronts. The smearing is a result of the first-order approximation of the advective term in the
transport equation. Datta Gupta et al. [1991] proposed and succesfully tested a third-order
diferencing scheme with an appropriate flux limiting funtion which significantly minimizes
numerical diffusion while, at the same time, avoiding oscillations that commonly affect classical
higher-order schemes. 

The third-order TVD technique is best described following an example outlined by Datta
Gupta et al. [1991]. Assume solute transport according to the hyperbolic conservation equation
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C

t
= − ∇ C V[ ]( )

=l,g.n
∑            (6.2.36)

When only aqueous transport is considered in the x-direction, Equation (6.2.36) reduces to

Cl

t
=

ClVl( )
x

          (6.2.37)

With Vl taken to be a positive constant, Equation (6.2.37) can be discretized over a mesh cell i
and time step interval [n,n+1} to yield

Cl, i
n+1 − Cl,i

n

∆t
=

Vl Cl, i+1/2 − Cl, i−1/2( )
∆x

         (6.2.38)

The time-averaged fluxes can be approximated as follows

C l, i+1/2 = Cl,i
n +1/2(1 − )Fi∆x          (6.2.39)

where

= Vl
∆t

∆x

and Fi is the concentration gradient of the upwind cell. The STOMP simulator uses the Leonard
[1979] scheme to obtain third-order accuracy

Fi =
2 −

3

Cl,i +1
n − Cl ,i

n

∆x
+

1 −
3

Cl,i
n − Cl,i−1

n

∆x
         (6.2.40)

The TVD scheme is constructed by combining lower and higher-order fluxes and by imposing
limiter functions on the higher-order flux to prevent oscillations. Equation (6.2.39) can be
rewritten in a first-order flux plus a corrective term

C l, i+1/2 = Cl,i
n + r( ) (Cl, i+1

n − Cl,i
n )

2
1 −( )         (6.2.41)

where r( )  is the flux-limiting function and r is a measure of data smoothness [Datta Gupta et al.
1991]. For Leonard’s scheme with positive velocities
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r( ) =
2 −

3
+

1 +
3

r         (6.2.42)

where

r =
Cl, i

n − Cl , i−1
n

Cl ,i+1
n − Cl, i

n ,for C l, i+1/2

and

r =
Cl, i−1

n − Cl, i−2
n

Cl, i
n − Cl, i−1

n ,for Cl, i−1/2

To ensure that the limited antidiffusive flux is maximized in amplitude subject to the scheme
being TVD, the following limiter is used in the STOMP code

r( ) = max 0,min 2,2r ,
2 + r

3
 
 

 
 

 
  

 
         (6.2.43)

6.3  Boundary Conditions

The discretization methods described above for the mass, energy, and solute mass
conservation equations strictly applied to interior nodes (i.e., nodes surrounded by neighboring
nodes).  For nodes adjacent to a domain boundary or an inactive node the discretized forms of the
governing equations are modified according to the user specified boundary conditions.  Zero flux
boundary conditions are applied whenever no boundary condition is specified for a boundary
surface.  Boundary conditions which can be specified for a boundary surface are varied, depend
on the operational mode, and other associated boundary conditions.

Eight boundary conditions are appropriate for flow boundaries and are applicable to the
conservation equations for water, air, and oil mass: Dirichlet, Neumann, zero flux, initial
condition, saturated, unit gradient, hydraulic gradient, and free gradient.  The Dirichlet boundary
condition specifies the value of intrinsic properties on the boundary surfaces (e.g., aqueous
pressure, gas pressure, NAPL pressure).  The Neumann boundary condition specifies a surface 
flux on the boundary surface (e.g., aqueous Darcy velocity, gas Darcy velocity, NAPL Darcy
velocity).  The zero flux boundary condition specifies an impermeable boundary for flow or
transport and serves as the default condition for undeclared boundary surfaces (e.g., zero fluid
flow).  The initial condition boundary condition uses the initial conditions in the nodes adjacent
to a boundary surface to fix the intrinsic properties on the boundary surface.  The saturated  

6.16



EW

T

B

δxEδxW

δxT

δxB

P
ςEςW

ςT

ςB

X

Z
zgZ

zgX

zg

Figure 6.1.  X-Z Coordinate Plane for Cartesian Systems

6.29



NS

T

B

δxNδxS

δxT

δxB

P
ςNςS

ςT

ςB

Y

Z
zgZ

zgY

zg

Figure 6.2.  Y-Z Coordinate Plane for Cartesian Systems

6.30



EW

T

B

δxEδxW

δxT

δxB

P
ςEςW

ςT

ςB

R

Z
zgZ

zg

Figure 6.3.  R-Z Coordinate Plane for Cylindrical Systems

6.31



ςE

ςW

ςN

ςS

E

W

N

S

P

δxW δxE

δxN

δxS

rP

R

Θ

Figure 6.4.  R-Θ Coordinate Plane for Cylindrical Systems

6.32



boundary condition is appropriate for fluid flow boundaries for two-phase systems and
establishes zero capillary pressure conditions on the boundary surface. The unit gradient
boundary condition is appropriate for fluid flow boundaries and establishes a fluid pressure on
the boundary surface equal to the fluid pressure at the adjacent node modified by the hydraulic
gradient for the fluid.  The free gradient boundary condition is appropriate for fluid flow
boundaries for two-phase systems and establishes a fluid pressure on the boundary surface by
extrapolating the local pressure gradient within the computational domain to the boundary
surface.  The hydraulic gradient boundary condition is appropriate for fluid flow boundaries and
establishes a series of boundary pressures according to the local hydraulic gradient for the fluid.    

Five boundary conditions are appropriate for transport boundaries and are applicable to
the conservation equations for energy and solute mass: Dirichlet, zero flux, initial condition,
outflow and inflow.  The Dirichlet boundary condition specifies the value of intrinsic properties
on the boundary surfaces (e.g., temperature, or solute concentration).  The zero flux boundary
condition specifies an impermeable boundary for flow or transport and serves as the default
condition for undeclared boundary surfaces (e.g., zero heat flux, or zero solute flux).  The initial
condition boundary condition uses the initial conditions in the nodes adjacent to a boundary
surface to fix the intrinsic properties on the boundary surface.  The outflow boundary condition
considers transport out of the computational domain by advection only, no diffusive transport
occurs.  This boundary conditions will not transport energy or solute mass into the domain.  The
inflow boundary condition considers transport into the computational domain only by advection;
no diffusive transport occurs.  This boundary condition will not transport energy or solute mass
out of the domain.

In general, boundary conditions for simulations that involve the solution of multiple
governing equations can be combined in a variety of ways, one major restriction.  Specification of
a Neumann boundary condition for the energy equation on a boundary surface, other than the
zero flux condition, requires that the flow equation boundary conditions for that boundary
surface be specified as zero flux.  Nonzero fluid flow and heat transport can be achieved for
boundary nodes through a combination of flow boundary conditions, a zero flux energy
boundary, and energy sources for the boundary nodes.  Regardless of the boundary condition or
combination of boundary conditions a sufficient number of independent intensive variables must
be declared to specify the thermodynamic and hydrologic state on the boundary surface. 
Definitions for geometric parameters for nodes with boundary surfaces on the “west” side are
shown in Figures 6.5 and 6.6 for the X-Z and X-Y Cartesian coordinate planes and in Figures 6.7
and 6.8 for the R-Z and R-Θ cylindrical coordinate planes, respectively.
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6.3.1  Dirichlet Boundary Condition

The Dirichlet boundary condition is equivalent to specifying the value for the primary
unknown on the boundary surface.  Assigned values of primary variables are used to compute
secondary variables for the boundary surface.  Average properties for transport between a
boundary surface and the adjacent node are computed using user specified averaging schemes
between the values of the properties on the boundary surface and adjacent node.  For example,
the discretized forms for Darcy mass flux and diffusive mass flux rates of water, Equation (6.2.7),
are modified for a Dirichlet aqueous phase boundary condition on a “west” boundary surface,
according to Equations (6.3.1) and (6.3.2), respectively.  For the salt and solute mass
conservation equations, a Dirichlet boundary condition on the “west” surface produces a
modification to the discretized conservation equation, Equations (6.2.26) and (6.2.35), according
to Equation (6.3.3) and (6.3.4), respectively.
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6.3.2  Neumann Boundary Condition

The Neumann boundary condition is equivalent to specifying the flux on a boundary
surface.  Fluxes which may be specified are aqueous volumetric, gas volumetric, NAPL
volumetric, energy, and solute mass.  For example, the discretized form for Darcy mass flux of
water, Equation (6.2.7), is modified for a Neumann boundary condition on a “west” boundary
surface, according to Equation (6.3.5).  Sufficient information is needed to fix the thermodynamic
and hydrologic state on the boundary surface.  Calculation of phase pressures from phase
volumetric flow rates requires an iterative solution because averaged values of properties (e.g.,
relative permeability) are nonlinear functions of the phase pressure on the boundary.  To avoid
an iterative solution of the phase pressure on the boundary phase pressures are computed
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assuming a unit relative permeability, according to Equation (6.3.6) for a “west” boundary
surface.
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6.3.3  Zero Flux Boundary Condition

The zero flux boundary condition is the default boundary condition and is equivalent to
specifying zero flow and/or transport across the boundary surface.  Complex boundary
conditions, which involve multiple specifications on a single boundary surface, require that
sufficient information be specified to fix the thermodynamic and hydrologic state on the
boundary surface.  For example, a recognized boundary condition combination for an water-air
system (i.e., Two-Phase Volatile operational mode) is a Dirichlet aqueous boundary and zero flux
gas boundary.  Isothermal water-air systems require two independent intensive variables to fix
the thermodynamic and hydrologic state of the system.  For this boundary system the Dirichlet
aqueous boundary assigns a value to the aqueous pressure.  The gas pressure can be specified
through user input or be computed using zero flux boundary conditions and solving Equation
(6.2.7) for the gas pressure, according to Equation (6.3.7) for a “west” boundary surface.

PgWB
 =  xWB g g

WB

a
zgWB

+ PgP
(6.3.7)

6.3.4  Initial Condition Boundary Condition

The initial condition boundary condition is identical in application to the Dirichlet
boundary condition, with the exception that the primary variable is fixed to the initial value at the
adjacent node.  No user input is required for this type boundary condition because boundary
values are obtained through the initial condition specifications.  Initial boundary pressures are
computed once at the start of a simulation.
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6.3.5  Saturated Boundary Condition

The saturated boundary condition is recognized for water-air systems and perform as
dynamic Dirichlet boundary conditions, where zero capillary pressure is maintained on the
boundary surface.  The saturated boundary condition fixes the aqueous pressure equal to the gas
pressure on a boundary surface regardless of the boundary condition for the gas pressure.  For a
single-phase system, the gas pressure is fixed through the initial conditions and the aqueous
pressure is maintained on a saturated boundary equal to this gas pressure.  For a two-phase
system, the gas pressure on a boundary surface is user specified according to the gas-phase
boundary conditions.  The saturated boundary condition for the aqueous phase fixes the aqueous
pressure at the boundary surface equal to the gas pressure.  Saturated boundary pressures are
computed with each Newton-Raphson iteration.

6.3.6  Unit Gradient Boundary Condition

The unit gradient boundary condition is recognized for aqueous-phase, gas-phase, and
NAPL boundary conditions and maintains a unit gradient in the phase hydraulic head.  A unit
gradient in the phase hydraulic head is equivalent to setting the normalized Darcy velocity equal
to minus one, according to Equation (6.3.8) for a “west” boundary surface.  Phase pressure on
the boundary surface is computed by solving Equation (6.3.8) for the boundary pressure,
according to Equation (6.3.9), for a “west” boundary surface.  Unit gradient boundary pressures
are computed with each Newton-Raphson iteration.
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6.3.7  Free Gradient Boundary Condition

The free gradient boundary condition is recognized for aqueous-phase, gas-phase, and
NAPL boundary conditions.  This boundary condition is essentially a dynamic Dirichlet-type
boundary, where the pressure on the boundary surface is set to maintain the gradient in pressure
in the interior nodes adjacent to the boundary surface.  This boundary type requires, as a
minimum, two active nodes adjacent to the boundary surface.  The gradient in phase pressure is
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linearly extrapolated from the interior nodes to the boundary surface to determine the boundary
pressure.  Free gradient boundary pressures are computed with each Newton-Raphson iteration.

6.3.8  Outflow Boundary Condition

The outflow boundary condition is recognized for transport boundaries (e.g., energy
transport, solute transport).  This boundary conditions allows transported quantities to be
transported out across a boundary surface by advection only.  Transport by diffusion or
transport in across the boundary surface is prohibited.  Energy flux across an outflow boundary
surface on a “west” boundary is computed according to Equation (6.3.10).  Solute flux across an
outflow boundary surface on a “west” boundary is computed according to Equation (6.3.11).
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6.3.9  Inflow Boundary Condition

The inflow boundary condition is recognized for transport boundaries (e.g., energy
transport, solute transport).  This boundary conditions allows transported quantities to be
transported in across a boundary surface by advection only.  Transport by diffusion or transport
out across the boundary surface is prohibited.  Energy flux across an inflow boundary surface on
a “west” boundary is computed according to Equation (6.3.12).  Solute flux across an inflow
boundary surface on a “west” boundary is computed according to Equation (6.3.13).
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6.3.10 Falling-Head/Pond Boundary Condition

The falling-head boundary condition computes the phase pressure on a single boundary
surface assuming the surface is supplied with a ponded fluid source.  Fluid fluxes into the
computational domain will deplete the fluid source; whereas, fluid fluxes from the computational
domain will increase the source.  The falling-head boundary can be applied to all boundary
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surface orientations, however, the ponded fluid is always assumed to drain with the gravitational
vector.  Boundary pressures computed for the falling-head type boundary condition are those for
the current time step, therefore will vary with iteration.  The falling-pond boundary condition is
analogous to the falling-head boundary condition with two exceptions.  This boundary condition
can be applied over multiple boundary surfaces, which are connected to a single ponded source of
fluid, and the boundary pressure remains constant between iterations, computed from previous
time step conditions.  The falling-pond boundary condition will typically over estimate
infiltration rates compared with the more accurate falling-head boundary condition.  The
falling-pond boundary condition, however, is required for multiple boundary surfaces connected
to a common ponded fluid source.

The falling-head and falling-pond boundary conditions are intended to compute the
pressure on a boundary surface assuming the surface is connected to ponded fluid.  The pressure
at the boundary surface is computed as the hydrostatic pressure for the column of ponded fluid. 
The fluid density of the ponded column is assumed to be constant at the density of the node
adjacent to the boundary surface.  The height of fluid in the ponded column varies with flux
across the boundary surface, where flux into the system reduces the column height.

For the falling-pond boundary, the pressure at the boundary surface is computed from the
height of fluid in the ponded column, according to Equation (6.3.14)
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For the falling-head boundary condition, the pressure at the boundary surface is
computed for the current time step according to Equation (6.3.15) and (6.3.16)
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Combining Equations (6.3.15) and (6.3.16) yields an expression for the aqueous-phase boundary
pressure, according to Equation (6.3.17).
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6.4  Newton-Raphson Linearization

The discretized governing equations for component mass conservation, salt mass, and
energy conservation, Equations (6.2.9) and (6.2.18), form a nonlinear set of algebraic equations. 
Nonlinearites arise from the dependence of secondary variables on the primary unknowns.  Cross
dependencies of secondary variables in one governing equation with the primary unknown in
other governing equations requires that this system of nonlinear equations be solved
simultaneously.  A primary assumption associated with the solute mass conservation equation is
that the solute concentrations are infinitely dilute.  This assumption implies that fluid properties
are independent of solute concentrations, which allows the solution of the solute conservation
equations to be solved separately from the coupled flow and energy transport solutions.  The
discretized governing equations for solute mass conservation, Equation (6.26a), form a linear set
of algebraic equations, which are solved directly following the solution of the coupled flow and
energy transport system.  The nonlinearities in the coupled flow and energy transport system of
equations are resolved through the application of the iterative Newton-Raphson technique.

The Newton-Raphson linearization technique is an iterative method for solving
nonlinear algebraic equations of the form shown in Equation (6.4.1), where f x( )  is differentiable
in x .  The linearization concept approximates f x( )  with suitable tangents.  Each iteration yields
a new estimate of x  as the intersection of the tangent to the function f x( )  at the previous
estimate of x  and the abscissa axis, according to Equation (6.4.2) in mathematical form.  In this
formulation  f x( )  is considered the equation residual.  For convergent systems, the residual
decreases in a quadratically with iteration.  In multiple variable systems, as with the coupled flow
and energy transport system, the scalar function, f x( ) , is replaced with a vector function R x( ) ,
according to Equation (6.4.3).  The vector function, R x( ) , represents the system of nonlinear
algebraic equations produced from discretizing the conservation equations for component mass
and energy, Equations (6.2.9) and (6.2.18).  The vector of unknowns, x , represents the set of
primary variables for the system, which are determined by the operational mode and phase
conditions.  Equation (6.4.3) can be rewritten in terms of increments to the primary variables,
according to Equation (6.4.4).  The partial derivatives shown in Equation (6.4.4) form the
Jacobian matrix.

6.23



f x( )  =  0 (6.4.1)

xn+1  =  x n −
f x( )
′ f x( ) (6.4.2)

xn+1  =  xn −
R x( )

′ R x( ) (6.4.3)

R x( )
x

∆x  =  − R x( ) (6.4.4)

To simplify these discussions a one-dimensional system involving the solution of the
water mass, air mass, and energy conservation equations will be considered.  The system of linear
equations that result from applying the Newton-Raphson linearization technique to this system
of nonlinear algebraic equations is shown in Equation (6.4.5) for a computational domain with
“n” nodes.  In Equation (6.4.5) each Jacobian matrix element represents a block matrix of order
three, according to Equation (6.4.6); each unknown vector element represents a vector of
increments to the primary variables of order three, according to Equation (6.4.7); and each
solution vector element represents a vector of equation residuals of order three, according to
Equation (6.4.8).
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For a two-dimensional system involving the solution of the water mass, air mass, and
energy conservation equations, the Jacobian matrix would contain two extra bands of block
matrices: one below and one above the diagonal band.  These extra bands would be located one
half-band width from the main diagonal band, where the half-band width equaled the lesser of the
number of nodes per row or column for a two-dimensional grid.  A three-dimensional grid would
contain four extra bands of block matrices, two below and two above the diagonal band.  The
furthest bands would be located one half-band width from the main diagonal band, where the half-
band width equaled the least number of nodes in a plane.  For example, a three-dimensional
Cartesian grid with 20 nodes in the “X” coordinate direction, 30 nodes in the “Y” coordinate
direction, and 40 nodes in the “Z” coordinate direction, would have a half-band width of 600.

The Newton-Raphson scheme has two major computational components.  The first
component involves computing the Jacobian matrix and solution vector elements; the second
component involves solving the resulting linear system of equations.  Both components are
required during each iteration.  The Jacobian matrix elements are essentially partial derivatives of
the equation residuals with respect to the primary variables.  These partially derivatives are
computed numerically as exemplified in Equation (6.4.9).  Numerical evaluation of these partial
derivatives was chosen over analytical evaluation because its robustness and directness in coding.
The numerical evaluation scheme requires that the equation residuals be evaluated with the most
current values of the primary variables and with each primary variable slightly incremented. 
Increments to the primary variables are critical parameters for implementing the Newton-
Raphson linearization scheme using numerical derivatives.  Excessively large increments can lead
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to nonconvergent solutions because the tangents to the residual equations are computed
incorrectly.  In contrast, excessively small increments can result to changes in the equation
residuals, which are below the precision limit.
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j PVl
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− Rk
j PVl

i

∆ PVl
i (6.4.9)

Each Newton-Raphson iteration procedure begins with the start of a new time step or
after a convergence failure and reduction in time step.  Each iteration begins by executing logic
algorithms that determine the primary variable set from phase conditions and fix the primary
variable increments.  The next step is to calculate all secondary variables with the current primary
variables and with each primary variable incremented.  Following this, all flux variables are
evaluated with the current primary and associated secondary variables and then repeated with the
incremented primary and associated secondary variables.  With the secondary variables and fluxes
evaluated, the residuals to the governing equations are computed using current and incremented
values of the primary, secondary, and flux variables.  The current and incremented equations
residuals are then used to compute the partial derivatives that comprise the Jacobian matrix and
the solution vector.

The resulting system of linear equations is then solved with either a direct or iterative
linear system solver, with the unknowns being increments to the primary variables.  Converged
solutions are recognized by comparing the maximum normalized increment to the primary
variables against a convergence criterion (i.e., user specified limit).  A Newton-Raphson iteration
ends by updating the primary variables with the latest computed primary increments.  If the
largest normalized primary variable increment exceeds the convergence limit, then another
iteration is executed.  If the solution is convergent, then the solute transport equations are solved
or a new time step is initiated.  In the case of a nonconvergent solution, the time step is reduced, 
the primary variables are reset to the most recent converged values, and the time step is
reinitiated.

6.5  Linear System Solvers

The system of linear equations that results from the discretization of the governing
partial differential equations over a particular computational domain always has a banded
structure, where the number of off diagonal bands equals the dimensionality of the computational
domain.  Elements within the Jacobian coefficient are actually submatrices, where the submatrix
order equals the number of solved coupled governing equations.  For example, the solution of
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only the water conservation equation produces single element submatrices; whereas, the solution
of the three mass conservation equations simultaneously with the energy equation yields four-
by-four submatrices.  These structured Jacobian coefficient matrices arise from the element
sequencing scheme incorporated into the Arid-ID engineering simulator and limitations on the
computational domain structures.  The matrix sequencing or numbering algorithms are designed to
minimize the largest half-band width for a given computational domain and solution option
combination.  The sequencing algorithms are designed for orthogonal grid systems that are six-
surfaced in three dimensions or four-sided in two dimensions.  

Two linear equation solvers are available within the Arid-ID engineering simulator a
direct banded matrix algorithm and an iterative conjugate gradient algorithm.  The banded matrix
algorithm is generally more appropriate for small to moderately sized Jacobian matrices (order
less than 35,000); whereas, the conjugate gradient algorithm appears more appropriate for larger
order Jacobian matrices.  In general, the banded matrix algorithm requires more memory than the
conjugate gradient algorithm, which uses an efficient sparse matrix storage scheme.  The banded
matrix algorithm is computationally more efficient on small to moderately sized problems;
however, for larger problems the conjugate gradient algorithm becomes the better performer. 
Both linear equation solution algorithms were obtained from publicly available software
packages.

The banded matrix solution algorithm was extracted from the LINPACK subroutines
(Dongarra et al. 1980) for general nonsymmetric band matrices.  The algorithm operates on band
matrices by decomposing the matrix into an upper triangular and lower triangular matrix.  The
matrix product of the lower triangular matrix with the upper triangular matrix equals the original
band matrix (i.e., A =  L U , where A  is the band matrix, L  is the lower triangular matrix andU
is the upper triangular matrix).  The system of linear equations, A x = b , is solved with the above
decomposition or factorization by solving successively L U x( )  =  b .  This factorization
procedure produces nonzero elements outside the bands of the original band matrix.  If ml equals
the half-band width of the Jacobian coefficient matrix (the Arid-ID engineering simulator
produces band matrices with equal lower and upper band widths), then the two triangular factors
have band widths of ml and 2ml.  Storage must be provided for the extra ml diagonals.  This is
illustrated for a one-dimensional problem of five nodes and two-solved mass conservation
equations.  The Jacobian coefficient matrix for this problem would appear as shown in
Equation (6.5.1).  The band storage requires 3 ml + 1 =  10  rows of storage arranged as shown in
Equation (6.5.2).  The * indicates elements which are never referenced but storage space must be
provided.  The + indicates elements which may be occupied during the factorization process. 
The original Jacobian coefficient matrix is referred to as A  and its storage counterpart as a ; then
the columns of A  are stored in the columns of a , and the diagonals of A  are stored in the rows
of a , such that the principal diagonal is stored in row 2 ml +1  of a .
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A  =  

x1,1 x1,2 x1,3 x1,4 0 0 0 0 0 0

x2,1 x2,2 x2,3 x2,4 0 0 0 0 0 0

x3,1 x3,2 x3,3 x3,4 x3,5 x3,6 0 0 0 0

x4,1 x4,2 x4,3 x4,4 x4,5 x4,6 0 0 0 0

0 0 x5,3 x5,4 x5,5 x5,6 x5,7 x5,8 0 0

0 0 x6,3 x6,4 x6,5 x6,6 x6,7 x6,8 0 0

0 0 0 0 x7,5 x7,6 x7,7 x7,8 x7,9 x7,10

0 0 0 0 x8,5 x8,6 x8,7 x8,8 x8,9 x8,10

0 0 0 0 0 0 x9,7 x9,8 x9,9 x9,10

0 0 0 0 0 0 x10,7 x10,8 x10,9 x10,10

(6.5.1)

a  =  

∗ ∗ ∗ ∗ ∗ ∗ + + + +
∗ ∗ ∗ ∗ ∗ + + + + +
∗ ∗ ∗ ∗ + + + + + +
∗ ∗ ∗ x1,4 0 x3,6 0 x5,8 0 x7,10

∗ ∗ x1,3 x2,4 x3,5 x4,6 x5,7 x6,8 x7,9 x8,10

∗ x1,2 x2,3 x3,4 x4,5 x5,6 x6,7 x7,8 x8,9 x9,10

x1,1 x2,2 x3,3 x4,4 x5,5 x6,6 x7,7 x8,8 x9,9 x10,10

x2,1 x3,2 x4,3 x5,4 x6,5 x7,6 x8,7 x9,8 x10,9 ∗
x3,1 x4,2 x5,3 x6,4 x7,5 x8,6 x9,7 x10,8 ∗ ∗
x4,1 0 x6,3 0 x8,5 0 x10,7 ∗ ∗ ∗

(6.5.2)

The conjugate gradient solution algorithm was extracted from the SPLIB package of
subroutines intended for solving large sparse linear systems by iterative methods (Bramley and
Wang 1995).  This package of subroutines has various acceleration techniques and
preconditioners available for solving large sparse linear systems. The reader is referred to the
original reference for detailed information.
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7.0  Code Architecture

7.1  Introduction

The primary design guides for the STOMP simulator have been modularity,
computational efficiency, and readability.  A modular code architecture is beneficial because of
the ease of reading, maintaining, and modifying the algorithms and is essential to the variable
configuration source code.  Computational efficiency refers to both memory requirements and
execution speed.  The STOMP simulator has been designed with a variable configuration source
code that allows the memory requirements and code algorithms to be partially customized to the
computational problem.  This approach offers considerable advantages with respect to achieving
a computationally efficient code design.  Within this source code framework, however, many
design choices have been made that affect computational efficiency.  Algorithm design often
offers options between memory and speed.  For example, to lessen memory requirements, a code
designer may opt to repeatedly compute commonly used variables.  Conversely, execution speed
may be increased at the cost of increased memory requirements, by storing commonly used
variables after their initial computation.  Generally, the approach in the STOMP simulator has
been to favor increased memory requirements to gain computational speed.  This design approach
has been chosen because of current state of computer architecture and capabilities.  Because the
STOMP simulator has been created as a scientific tool, algorithm readability has been an primary
design guide.  As a scientific tool, the simulator was never expected to remain unmodified, but
rather a constantly changing package of software tools which could be applied to new or more
complex problems.  This design goal makes readability an essential feature of the code.  Code
readability has been achieved through an extensive use of comments, a modular design, a large
group of common blocks, and minimal subroutine and function arguments.

7.2  Flow Path

The primary flow path for all operational modes of the STOMP simulator comprises
three components; initialization, iteration, and closure.  Control of the flow path at the primary
level occurs from within the main program routine named “STOMP,” for all operational modes. 
A flow chart for the initialization, iteration, and closure components of the main program is
shown in Figure 7.1.  The initialization component of the program is executed once during a
simulation.  The routines in the initialization component are executed sequentially, as shown in
Figure 7.1, from the program start to the start of the first time step.  The iteration component of
the program contains a pair of nested loops, one for time stepping and the other for Newton-
Raphson linearization.  Termination of the Newton-Raphson loop occurs with a successful
convergence or with an iteration limit violation.  Termination of the time-stepping loop occurs
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with simulation limit or a time step reduction limit violation.  Regardless of the termination cause,
the closure routines are executed at the successful or unsuccessful completion of a simulation. 
The transport solution is shown as a single routine on the STOMP flow diagram.  It comprises,
however, several transport routines within a solute loop.  The flow diagram for the solute
transport portion of the iteration component is shown in Figure 7.2.

The initialization component of the program flow path begins with an initialization of the
clocks and variables.  All variables in the common blocks of the “commons” file are initialized at
this point either to zero or default values.  Unless specifically defaulted, integers are initialized to
0, real variables are initialized to 0.D+0, and character strings are initialized to blank.  During the
variable initializations, the “input” and “output” files are opened.  The next routine prints the
welcome statement, disclaimer, and banner to the standard output device (screen) and the output
file.  This is followed with the procedures for reading the “input” file.  The “input” file is read
using a predefined card order.  After each card has been read, the “input” file is rewound and
searched from the beginning for the next card to be read.  This approach allows the user to order
input cards in a random order.  The predefined card read order is critical and should not be altered
in the software.  When appropriate “restart” files are read for input data information during these
procedures.  Input data is checked for saturation or thermodynamic state consistency in the
“Check Physical States” routines.  If an error is found in these routines the simulation will be
terminated with an associated error message.  If no errors in thermodynamic state are noted, then
the program continues initializing variables with the Jacobian matrix pointers.  The Jacobian
matrix structure varies with operational mode and grid geometry.  Refer to Section 6.0 for a
description of the numerical methods and linear system solvers.  Jacobian matrix pointers are
integer arrays that relate primary variables for a particular node to a location in the Jacobian
matrix.  If the simulation does not involve dynamic domains, then these pointers are constants
during the simulation and need to be computed only once.  The next three initialization routines
compute initial values for the secondary variables from the initial conditions specified through the
“input” or “restart” files.  These routines have been divided into three components (i.e., those for
computing phase saturation related variables, thermodynamic properties, and solute
concentrations).

The iteration component of the program flow path contains a pair of nested loops.  The
outer loop increments time and represents a single time step and the inner loop increments
iterations of the Newton-Raphson linearization technique.  During a single time increment loop
(time step) both the flow and transport governing equation sets are solved.  The Newton-
Raphson linearization loop is applicable only to the solution of the mass and heat flow governing
equations.  The solute transport governing equations are solved directly (without iteration) and
sequentially to the iterative flow solution.  Each time step loop starts with a computation of the
new time step and increments to the time and time step counter.  Time steps are computed with
an algorithm based on the previous complete time step, the time step acceleration factor, and the
time to a transition point.  Transition points occur with changes in execution period times,

7.2



boundary condition times, source times, and output times.  Time steps always conclude on
transition points, which commonly requires the time step to be temporarily reduced.  The time
step, following a temporary reduction to meet a transition point time, will resume the prior time
stepping levels, except in the case of execution period transitions where a new initial or maximum
time step has been declared.  The next procedure involves loading the previous time step arrays
for field variables.  Field variables from the array location for the current field variable value are
loaded into the array location for the previous time step field variable value.  The next three
routines, prior to starting a Newton-Raphson iteration loop, involve writing previous time step
results to output.  Simulation results are written to the “Reference Node Output Record,” the
standard input/output device (screen), a “plot” file, and/or a “restart” file, depending on the
directives made by the user on the “Output Control” card.

The Newton-Raphson iteration loop solves the governing flow equations for component
mass and energy.  The first procedure within this loop involves the calculation of boundary
surface properties.  Each declared boundary surface, has associated field variables which are
computed with the same algorithms as the node field variables, but only when the boundary
condition is active.  This approach eliminates the necessity for computing field variable values for
disabled boundary surfaces.  The next group of routines computes fluxes across interior surfaces
(those surfaces between active nodes).  Fluxes which are computed within these routines are
dependent on the operational mode and include Darcy phase velocities, component diffusion-
dispersion fluxes, thermal conductive flux, thermal advective flux, and thermal diffusion-
dispersion fluxes.  The same group of flux variables is computed in the next procedure for each
active boundary surface.  As with the procedure for computing field variables on boundary
surfaces the approach of computing flux variables only for active boundary surfaces eliminates
computing unused boundary flux variables.  The next procedure computes source and/or sink
contributions to each of the governing flow equations from the user specified inputs on the
“Source” card.  Source contributions are stored in arrays and subsequently used in computing the
Jacobian matrix coefficients.  At this point in the Newton-Raphson iteration loop, all field and
surface flux variables have been computed, along with the source contributions.  These variables
compose the primary components of the governing flow equations.

Coefficients of Jacobian matrix and solution vector are computed in a multiple stage
sequence.  The first stage involves setting all of the previous coefficient arrays to zero.  This
stage is necessary because the nonzero elements of the Jacobian matrix will change with time step
as various boundary condition transition between active and inactive states.  The second stage
involves computing the Jacobian matrix and solution vector with the assumption of zero flux
boundary conditions for all boundary surfaces, including surfaces between active and inactive
nodes.  The Jacobian matrix loading procedure depends on the operational mode, but is sequenced
according to governing partial differential equations.  Coefficients for the water mass conservation
equation are loaded first, followed by the air mass, oil mass, salt or surfactant mass, and energy
conservation equations.  The resulting system of equations represents the discretized and
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linearized system of governing flow equations with zero flux boundary conditions imposed,
where the source contributions have been incorporated.  The final stage modifies this linear
system according to the active user imposed boundary conditions.  Boundary conditions will
alter both the coefficient matrix and solution vector.  With the Jacobian matrix and solution vector
elements computed, the next procedure involves solving the linear system of equations.  The
linear system is solved either with a direct banded matrix solver or an iterative conjugate gradient
solver.  Both routines return corrections to the primary variables in the solution vector array.

Corrections to the primary variables, computed from the linear system solvers, are used
to update the primary variables and determine convergence.  The Newton-Raphson procedure
computes corrections to the primary variable set with each iteration.  The starting values for
primary variables for each new time step are the previous time step values of the primary
variables, as these values represent reasonable estimates of the future values.    For a convergent
iteration scheme, each successive iteration yields diminishing corrections to the primary variables.
Phase transitions and primary variable switching schemes, however, can yield temporary
increases in the correction to a particular primary variable.  The two procedures that immediately
follow the linear system solver procedures update the primary variables and determine
convergence.  Convergence occurs if the normalized values of the primary variable corrections for
all unknowns falls below a user-defined value (typically 1.x10-6).  The next three procedures,
which include computing increments to the primary variables, computing saturation related
properties, and computing thermodynamic properties, are executed independent of the
convergence result.  If convergence occurs, then these computed values represent the current
values of secondary variables at the conclusion of the time step.  Otherwise, they represent the
current iterate values of the secondary variables.  If convergence occurs, then the solution
procedure continues with solute transport procedures.  At the conclusion of nonconvergent
iterations, two additional checks are made.  If the iteration count does not exceed the user
specified limit, then program proceeds with a new Newton-Raphson iteration loop.  If the
iteration count exceeds the limit, then a check is made on the count of successive time step
reductions.  If convergence has failed and resulted in a time step reduction four times in
succession, then the simulation aborts and program execution is transferred to the closure
routines.  Otherwise, the time step is reduced, the program execution is transferred to the
beginning of the time increment loop, and another attempt is made to reach a converged solution
for the time step.

The transport solution procedure follows the iterative solution of the mass and heat flow
equations and, although a direct solution scheme, involves looping over the number of solutes.  A
procedure flow diagram for the transport solution routines is shown in Figure 7.2.  Before
entering the solute loop, the interior-surface and boundary-surface flux procedures are called to
obtain values of all flux variables at the conclusion of a time step.  Flux values at the conclusion
of a time step will typically vary from those computed during the last iteration of the current
time step, because the primary and secondary variables will have been updated near the bottom
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of the last Newton-Raphson iteration loop.  The surface flux calculations within the Newton-
Raphson loop differ from these surface calculations in that only the current unincremented value
of the surface flux is computed.

The transport solution procedure loops over the number of solutes in the reverse order
and they are defined on the “Solute/Fluid Interactions” card.  A reverse looping order is used to
compute progeny solutes before computing parent solutes.  This approach allows sequential
coupling between solutes that decay radioactively or chemically with first order reaction rates
yielding solute products.  The first step of the transport solution loop involves computing the
equilibrium distribution of solute between the fluid and solid phases.  The second step is to
initialize the coefficient matrix and solution vector elements to zero.  As with the flow solution
scheme, the possibility for boundary conditions and sources that transition makes initializing the
linear system elements mandatory.  The third step of the transport solution loop is to compute
the solute source and/or sink contributions.  Solute source contributions are incorporated directly
into the coefficient matrix and solution vector elements.  The fourth step involves loading the
coefficient matrix and solution vector.  As with the flow solution scheme,  the coefficient matrix
and solution vector elements are computed assuming zero-flux conditions on all boundary
surfaces.  Element loading depends on the operational mode and occurs sequentially by phases,
where the aqueous phase contributions are loaded first, followed by the gas phase and NAPL. 
Solid phase contributions are loaded with the first active fluid phase.  The fifth step of the
transport solution procedure is the solution of linear system of equations.  Algorithms for solving
the transport linear system of equations are identical to those for the flow solution, accept that
the returned results for the transport solution are directly the volumetric solute concentrations. 
The sixth step of the transport solution is to update the solute concentrations with their newly
computed values.  The concluding steps for the transport solution compute solute fluxes and
integrate the solute sources.  Once the transport solution loop has been executed for every solute
the program execution returns to the flow solution procedures.  Time steps for the transport
solution are by default equal to those used for the flow solution.  Although not currently an
option with the STOMP simulator, the transport solution could be advanced in fractional values
of the flow solution time steps.

The closure routines are only executed once at the successful or unsuccessful conclusion
of a simulation.  These routines generate final “plot” files, “restart” files, and close all opened
files.  Upon successful conclusion to the simulation the final “restart” file will contain a record of
the primary variables at the conclusion of the final time step.  Conversely, if a simulation
concludes unsuccessfully, because of a convergence failure or otherwise, the “restart” file will
contain a record of the primary variables at the conclusion of the previous converged time step. 
The STOMP simulator is a once through program.
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8.0 Engineered Systems

8.1. Dual-Screen Wells for In-Well Vapor-Stripping (IWVS)

The engineered component (i.e., air-lift pumping well) of the in-well vapor-stripping
system was treated numerically in the STOMP simulator as a linked solute source model.  In this
model, a zone of surfaces is defined within the computational grid over which inlet fluxes of
solute are summed.  In the physical domain, this would represent the lower screened interval of
the vapor-stripping well.  Solute concentrations of the incoming water are reduced according to
the thermodynamic equilibrium conditions at the separator plate.  The fundamental assumption
associated with this model is that sufficient interphase mass transport of the VOC has occurred
between the water and air during the air-lift pumping to achieve nearly equilibrium conditions at
the separator plate.  The zone of surfaces is then linked to a zone of nodes in the computational
domain that receives the solute at reduced concentration levels.  In the physical domain, this
would be equivalent to the separator plate and upper screened interval where water of lower
dissolved TCE concentration is infiltrated into the hydrologic system.

Thermodynamic equilibrium of the VOC between the aqueous and gas phases during air-
lift pumping is assumed to depend on the air-to-water volumetric flow ratio, well-head pressure,
temperature, and solubility of the dissolved VOC.  The mole fraction of dissolved solute in the
returning water stream can be computed from a conservation equation for solute between the inlet
and outlet of the vapor-stripping well, according to Equation (8.1.1).

  

˙ C  =  
g
voc

g ˙ q g
Mg

 +  l
voc

l ˙ q l
Ml

(8.1.1)

With the assumption of low VOC concentrations the gas and aqueous molecular weights can be
expressed as functions of the water and air mole fractions, according to Equations (8.1.2)
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a Ma + g

w M w

  Ml  =  Mw (8.1.2)

Phase partitioning of the VOC between the aqueous and gas phases is expressed using Henry’s
Law, according to Equation (8.1.3)

  
g
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l
voc Hgl
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(8.1.3)
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The mole fraction of dissolved VOC at the water-separator plate is computed by combining
Equations (8.1.1-3), according to Equation (8.1.4).

  

l
voc  =  

˙ C 

˙ q l

Hgl
voc

g
˙ q g

˙ q l
 
 

 
 

Pg Mg
+ l

Ml

 

 

 
 

 

 

 
 

(8.1.4)

8.2



8.3



9.0 References

Abriola, L.M., T.J. Dekker, and K.D. Pennell.  1993.  “Surfactant enhanced solubilization of
residual dodecane in soil columns.  2.  Mathematical Modeling.”  Environ. Sci. Technol. 27: 2341-
2351

ANSI.  1978.  American National Standard programming language FORTRAN.  X3.9-1978,
ANSI, 1430 Broadway, New York.

ASHRAE.  1977.  ASHRAE handbook and product directory, 1977 fundamentals.  American
Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., New York.

ASME.  1967.  Thermodynamic and transport properties of steam.  The American Society of
Mechanical Engineers, United Engineering Center, New York.

Bear, J.  1972.  Dynamics of fluids in porous media, Elsevier, New York.

Bird, R. B., W. E. Stewart, and E. N. Lightfoot.  1960.  Transport phenomena.  John Wiley &
Sons, Inc., New York.

Bramley, R., and X. Wang. 1995. SPLIB: A library of iterative methods for sparse linear
systems.

Brooks, R. H., and A. T. Corey.  1966.  “Properties of porous media affecting fluid flow.”  
Journal of Irrigation and Drainage Division 93(3):61-88.

Burdine, N. T.  1953.  “Relative permeability calculations from pore-size distribution data.” 
Petroleum Trans. 198:71-77.

Carnahan, B., H. A. Luther, and J. O. Wilkes.  1969.  Applied numerical methods.  John Wiley &
Sons, Inc., New York.

Corey, A. T.  1977.  “Mechanics of heterogeneous fluids in porous media.”  Water Resources
Publications, Fort Collins, Colorado.

Datta Gupta, A., L.W. Lake, G.A. Pope, and K. Sepehrnoori. 1991. “High-resolution monotonic
schemes for reservoir fluid flow simulation.” In Situ 15:289-317.

Delshad, M., G.A. Pope, and K. Sepehrnoori.  1996.  “A compositional simulator for modeling
surfactant enhanced aquifer remediation, 1 Formulation.”  J. Contam. Hydrol. 23:303-327.

9.1



De Vries, D. A.  1966.  “Thermal Properties of Soils.” In Physics of plant environment, edited by
W. R. Van Wijk, pp. 210-235, North-Holland, Amsterdam.

Dickerson, R.W., D.K. Tressler, W.B. Van Arnsdel, and M.J. Copley.  1969. Thermal properties
of food, in the  Freezing Preservation of Foods Vol. 2.  AVI Publishing Co., Westport, Conn.

Falta, R. W., K. Preuss, I. Javandel, and P. A. Witherspoon.  1990a.  Numerical modeling of
steam injection for the removal of nonaqueous phase liquids from the subsurface:  1. Numerical
Formulation.  LBL-29615, Lawrence Berkeley Laboratory, Berkeley, California.

Falta, R. W., K. Preuss, I. Javandel, and P. A. Witherspoon.  1990b.  Numerical modeling of
steam injection for the removal of nonaqueous phase liquids from the subsurface:  2. Code
validation and application.  LBL-29615, Lawrence Berkeley Laboratory, Berkeley, California.

Fayer, M.J. and C.S. Simmons. 1995. “Modified soil water retention functions for all matric
suctions.” Water Resour. Res. 31:1233-1238.

Jury, W. A., W. R. Gardner, and W. H. Gardner.  1991.  Soil physics.  John Wiley & Sons, Inc.,
New York.

Klavetter, E.A., and R. R. Peters.  1986.  Estimation of hydrologic properties of unsaturated
fractured rock mass.  SAND84-2642, Sandia National Laboratories, Albuquerque, New Mexico.

Kreyszig, E.  1979.  Advanced engineering mathematics.  Fourth Edition. John Wiley & Sons,
Inc., New York.

Kaluarachchi, J.J. and J.C. Parker. 1992. “Multiphase flow with a simplified model for oil
entrapment.” Transport in Porous Media 7:1-14.

Land, C. S.  1968.  “Calculation of imbibition relative permeability for two- and three-phase flow
from rock properties.”  Trans. Am. Inst. Min. Metall. Pet. Eng.  243:149-156.

Leijnse, A.  1992.  Three-dimensional modeling of coupled flow and transport in porous media. 
Ph.D. Dissertation, Notre Dame, Indiana.

Lenhard, R. J.  1994.  “Scaling fluid content-pressure relations of different fluid systems in
porous media.”  In Proc. of the Fourteenth Annual American Geophysical Union Hydrology Days,
Hydrology Days Publications, Atherton, California. pp. 223-235.

9.2



Lenhard, R. J., and J. C. Parker.  1987.  “A model for hysteretic constitutive relations governing
multiphase flow  2. Permeability-saturation relations.”  Water Resources Research, 23(12):2197-
2206.

Leonard, B.P. 1988. “Universal limiter for transient interpolation modeling of the advective
transport equations: The ultimate conservative difference scheme.” NASA TM 100916, ICOMP-
88-11.

Linke, W. F.  1965.  Solubilities inorganic and metal-organic compounds:  a compilation of
solubility data from the periodical literature.  Americal Chemical Society, Washington, D.C.

Loch, J. P. G.  1977.  “Thermodynamic equilibrium between ice and water in porous media.”  Soil
Sci., 126:77-80.

Mayer, A.S. and C.T. Miller.  1996.  “The influence of mass transfer characteristics and porous
media heterogeneity on nonaqueous phase dissolution.” Water Resour. Res. 32: 1551-1567.

Millington, R. J. and J. P. Quirk.  1959.  “Permeability of porous media.”  Nature 183:387-388.

Mualem, Y.  1976.  “A new model for predicting the hydraulic conductivity of unsaturated
porous media.”  Water Resources Research., 12:513-522.

Nichols, W. E., N. J. Aimo, M. Oostrom, and M. D. White. 2000.  “STOMP subsurface
transport over multiple phases. Version 2.0. Application guide.” PNNL-12028, Pacific
Northwest National Laboratory, Richland, Washington.

Nitao, J. J.  1988.  Numerical modeling of the thermal and hydrological environment around a
nuclear waste package using the equivalent continuum approximation:  horizontal emplacement.
UCID-2144, Lawrence Livermore National Laboratory, Livermore, California.

Panday, S., and M. Y. Corapcioglu.  1994.  “Theory of phase-separate multicomponent
contaminant transport in frozen soils.”  J. Contam. Hyd.,  16:235-269.

Parker, J. C. and R. J. Lenhard.  1987.  “A model for hysteretic constitutive relations governing
multiphase flow  1. Saturation-pressure relations.”  Water Resources Research, 23(12):2187-
2196.

Patankar, S. V.  1980.  Numerical heat transfer and fluid flow.  Hemisphere Publishing
Corporation, Washington, D. C.

9.3



Pennell, K.D., L.M. Abriola, and W.J. Weber, Jr.  1993.  “Surfactant enhanced solubilization of
residual dodecane in soil columns.  1.  Experimental investigation.”  Environ. Sci. Technol. 27:
2332-2340.

Pennell, K.D., G.A. Pope, and L.M. Abriola.  1996. “Influence of viscous and buoyancy forces
on the mobilization of residual tetrachlorethylene during surfactant flushing.” Envir. Science and
Technol. 30:1328-1335.

Pitzer, K. S., J. C. Peiper, and R. H. Busey.  1984.  “Thermodynamic properties of aqueous
sodium chloride solutions.”  J. Phys. Chem. Ref. Data, 13(1):1-102.

Reid, R. C., J. M. Prausnitz, and B. E. Poling.  1987.  The properties of gases and liquids. 
Fourth edition, McGraw-Hill Book Company, New York.

Sandler, S. I.  1989.  Chemical and Engineering Thermodynamics.  John Wiley & Sons, Inc., New
York.

Slattery, J. C., and R. B. Bird.  1958.  “Calculation of the diffusion coefficient of dilute gases and
of the self-diffusion coefficient of dense gases.”  Am. Inst. Chem. Engr. J. 4(2):137-142.

Somerton, W. H., A. H. El-shaarani, and S. M. Mobarak.  1974.  “High temperature behavior of
rocks associated with geothermal type reservoirs.”  Paper SPE-4897, presented at the 44th
Annual California Regional Meeting of the Society of Petroleum Engineers, San Francisco,
California.

Somerton, W. H., J. A. Keese, and S. L. Chu.  1973.  “Thermal behavior of unconsolidated oil
sands.”  Paper SPE-4506, presented at the 48th Annual Fall Meeting of the Society of Petroleum
Engineers, Las Vegas, Nevada.

Talbott, S.  1988.  Managing projects with make.  O’Reilly and Associates, Inc., Newton,
Massachusetts.

van Genuchten, M. Th.  1980.  “A closed-form equation for predicting the hydraulic
conductivity of unsaturated soils.”  Soil Sci. Soc. Am. J., 44:892-898.

van Wylen, G. J. and R. E. Sonntag.  1978.  Fundamentals of classical thermodynamics. 
2nd edition, revised printing, John Wiley & Sons, Inc., New York.

Vargaftik, N. B.  1975.  Tables on the thermodynamic properties of liquids and gases. 
Hemisphere Publishers, Inc., Washington, D. C.

9.4



Wark, K., Jr.  1995.  Advanced thermodynamics for engineers. McGraw-Hill, Inc., New York.

Washburn, E. W., C. J. West, N. E. Dorsey, F. R. Bichowsky, and M. D. Ring.  1929. 
International critical tables of numerical data, physics, chemistry, and technololgy.  National
Research Council, McGraw-Hill Book Company, Inc., New York.

White, M. D. 1995.  “Theory and numerical application of subsurface flow and transport for
transient freezing conditions.”  In Proc. of the Fifteenth Annual American Geophysical Union
Hydrology Days, Hydrology Days Publications, Atherton, California. pp. 339-352.

White, M.D. and M. Oostrom.  2000. “STOMP subsurface transport over multiple phases,
Version 2.0, User’s guide.” PNNL 12034, Pacific Northwest National Laboratory, Richland,
Washington. In Press.

Yaws, C. L., J. W. Miller, P. N. Shah, G. R. Schorr, and P. M. Patel.  1976.  Chem. Eng. Sci.
83(25):153.

9.5



9.6


